
A Test for the Consecutive Ones Property on Noisy Data

Wei-Fu Lu

Institute of Computer and Information Science

National Chiao Tung University, Hsin-chu, Taiwan, ROC

email: gis84812@cis.nctu.edu.tw

Wen-Lian Hsu*

Institute of Information Science

Academia Sinica, Taipei, Taiwan, ROC

email: hsu@iis.sinica.edu.tw

TEL: 886-2-7883799 EXT. 1804

FAX: 886-2-7824814

Keyword: consecutive ones property, physical mapping, DNA sequence assembly, probe

hybridization

* The corresponding author

 2

Abstract
A (0,1)-matrix satisfies the consecutive ones property (COP) for the rows if there exists a

column permutation such that the ones in each row of the resulting matrix are consecutive.

The consecutive ones test is useful for DNA sequence assembly, for example, in the STS

content mapping of YAC library, and in the Bactig assembly based on STS as well as EST

markers. The linear time algorithm by Booth and Lueker (1976) for this problem has a serious

drawback: the data must be error-free. However, laboratory work is never flawless. We

devised a new iterative clustering algorithm for this problem, which has the following

advantages:
1. If the original matrix satisfies the COP, then the algorithm will produce a column

ordering realizing it without any fill-in.

2. Under moderate assumptions, the algorithm can accommodate the following four types of

errors: FNs, FPs and NPs and CCs. Note that in some cases (low quality EST marker

identification), NPs occur because of repeat sequences.

3. In case some local data is too noisy, our algorithm could likely discover that and suggest

additional lab work that could reduce the degree of ambiguity in that part.

4. A unique feature of our algorithm is that, rather than forcing all probes to be included and

ordered in the final arrangement, our algorithm would delete some probes. Thus, it could

produce more than one contig. The gaps are created mostly by noisy columns.

 In summary, we have modified previous rigid algorithms for testing consecutive ones

property into one that can accommodate clustering techniques, and produces satisfactory

approximate probe orderings for most data.

 3

1. Introduction

A (0,1)-matrix satisfies the consecutive ones property (COP) for the rows if there

exists a column permutation such that the ones in each row of the resulting matrix are

consecutive. Booth and Lueker (1976) invented a data structure called PQ-trees to test

the COP of (0,1)-matrices in linear time. However, the implementation of PQ-tree

algorithm is quite complicated and it is unclear how one can modify this rigid

algorithm to accommodate errors in the input data (Alizadeh et al. (1994 and 1995)).

To avoid the use of PQ-trees, Hsu (2002) designed a simple off-line test for the COP,

which does not use PQ-trees. The test in Hsu (2002) requires the computation of a

global decomposition tree and a special row ordering before the actual consecutive

ones test (COT) can take place and therefore, is not suitable for noisy data either.

However, some idea in Hsu (2002) is quite robust and will be modified in this paper

to deal with input data that contains errors.

1.1 Applications of the COT

An important application of the COT is in the construction of physical maps for

human DNA sequences. The term “physical mapping” has come to mean the

determination of the order between landmarks in stretches of DNA by

physicochemical and biochemical methods. Several types of landmarks have been

used in physical maps, such as restriction fragment length polymorphism (RFLP),

restriction enzyme sites, sequence tagged sites (STSs), expressed sequence tags

(ESTs), and single nucleotide polymorphisms (SNPs). The construction of physical

maps is generally accomplished as follows. Long DNA sequences are separated into

smaller fragments (called clones). A number of landmarks (probes or markers) are

tested for their presence or absence in the clones. Given the collection of probes each

clone has been attached to, one tries to order the probes in such a way that probes

belonging to the same clone are consecutive. These will give us the relative positions

of the clones in the DNA sequence. The error free version of the mapping problem

can be viewed as the consecutive ones testing problem. However, the problem

becomes much harder when the data contain errors.

 The present paper focuses on the Sequence Tagged Site (STS) and Expressed

Sequence Tag (ESTs) mapping strategies, which are widely used for physical

mapping within the Human Genome Project (Palazzolo et al. 1991 and Mizukami et al.

1993). Recall that the STSs appear uniquely in the genome and the ESTs may be

 4

non-unique. In current sequence assembly effort, High Throughput Genomic (HTG)

Sequences division was created to accommodate a growing need to make 'unfinished'

genomic sequence data rapidly available to the scientific community. At the current

density of markers and the quality of the human genome draft, a mapping program

may not have sufficient information to get a complete physical map. Usually there are

multiple islands rather than a single contig. Lu et al. (2001) have taken advantage of

the expressed sequence tag (EST) matches as markers to increase marker density.

Some proper low quality (such as 70%) matches will be used to fortify the map

assembly. The incorporation of EST matches will not only order BAC clones, but also

the fragments within a clone. Moreover, the relation of two non-overlapping clones

can be determined if they share ESTs that belong to the same UniGene cluster. We

shall discuss this further in Section 5.

 As a side interest, another application of the COT is on the storage problem of

sparse (0,1)-matrix. If a given (0,1)-matrix satisfies the COP, then after a suitable

column permutation, the ones in each row form a consecutive block. Thus, one can

record the ones in each row by taking down the start and end entry of its block of ones.

Given a matrix that is slightly out-of-kilter, how does one modify its zeros and ones to

satisfy the COP?

1.2 Previous Approaches for Dealing with Errors

There are four possible types of errors in hybridization data for physical mapping:

false negatives, false positives, non-unique probes and chimeric clones. A false

negative (FN) is an entry of 0 that should actually be 1. A false positive (FP) is an

entry of 1 that should actually be 0. A non-unique probe (NP) is a probe sequence that

occurs more than once in the DNA sequence (in the original clone-probe incidence

matrix it would combine several columns into a false column). Two (or more) clones

that stick together at their ends form a chimeric clone (CC) (it would combine several

rows of the original clone-probe incidence matrix into a false row). Experimental

errors could create FPs, FNs and CCs; repeat sequences (or chromosomal duplications,

Eichler (2002)) would likely create “NPs.” These errors need to be detected and

corrected in order to yield the original valid clone-probe matrix. To tackle these

problems would require a different philosophy in designing algorithms. In fact, Karp

(1993) posted this as a major challenge for computer science. Several related

 5

problems have been proved to be NP-hard (Golumbic et al. 1994, Golumbic and

Shamir 1993 and Yannakakis 1981).

 There are many related researches done on this problem. Alizadeh et al. (1994)

suggested maximum-likelihood functions modeling the physical mapping problem,

and solved this problem based on the local search. Another method is to approximate

the maximum-likelihood function by a well-studied combinatorial problem such as

the Hamming-Distance Traveling Salesman Problem (Alizadeh et al. 1994, 1995, and

Greenberg and Istrail 1995). Christof et al. (1997) formulated the

maximum-likelihood model as a weighted betweenness problem using branch-and-cut

algorithms to bear on physical mapping. Jain and Myers (1997) converted the physical

mapping problem into 0/1 linear programming (LP) problem. Mayraz and Shamir

(1999) constructed physical maps using greedy method based on Bayesian overlap

score. Methods for filtering the data has also been offered as an attempt to remove

typical errors such as FPs and CCs (Gillett et al. 1995 and Mott et al. 1994).

 However, none of the approaches in the literature can deal with all four types of

errors simultaneously. Almost all of them assumed there is no NP.

1.3 The Nature of Error Treatment

Suppose the error percentage is 5%. The challenge is then to discover the 95% correct

information versus the 5% incorrect information automatically. There are two

difficulties we must face:

1. Different types of errors could be intertwined together as mentioned above.

Sometimes it is possible to transform certain recognition problems into optimization

problems by defining some "distance measure". For example, if we restrict the error

types to be FPs and FNs only, one can certainly propose an obvious distance measure

for the COP by asking "what is the least number of (0,1)-flips required for the given

matrix to satisfy the COP." But such an approach usually suffers from the following

two unpleasant phenomena: (1) The problem of finding this least number would likely

become NP-hard; (2) Even if one can find the best flips, the data in the resultant

matrix might not make much biological sense.

When all four types of errors occur simultaneously, the existence of FPs and FNs

makes it even more ambiguous to detect CCs and NPs. The dilemma is that, if one

could not identify CCs and NPs correctly, it would be difficult to identify FPs and

FNs, and the whole ordering could be corrupted. This error-mixed problem has

 6

multiple objectives since we want to (1) minimize (in fact, eliminate) the number of

CCs; (2) minimize the number of NPs; and simultaneously (3) minimize the number

of (0,1)- flips for the given matrix to satisfy the COP, etc. Thus, it would be difficult

just to define an associated “single objective optimization problem” for approximation.

Even if one could formulate such an optimization version, it would most likely be

NP-hard and the approximate solutions to such optimization problems might not make

much biological sense.

2. The errors might not be uniformly distributed. In other words, some local data

might be a lot noisier than we expected on the average. An improper treatment of such

local noise (such as a NP or a CC) could corrupt the whole probe arrangement.

Therefore, any global approach for the COT ignoring local variations could be

catastrophic. Most of the previous approaches would produce a “complete”

arrangement of all the probes. However, in our approach, if it appears that a probe

creates a disrupting behavior for its neighbors, it could be deleted from further

consideration. Thus, we shall delete a small percentage of the probes; produce a few

contigs (which we have more confidence in) rather than one contig with a complete

permutation of the probes as in most other methods. Such a measure is installed to

prevent possible disastrous result and is regarded as a key feature of our algorithm.

1.4 Our Approach

In view of the difficult nature of error treatment, we opt to maintain a stable local

structure through clustering techniques in our algorithm. The main idea of our

algorithm is based on the column contraction in Hsu (2002). We do not set any

“global” objective to optimize. Rather, our algorithm tries to maintain the local

monotone structure, namely, to minimize the deviation from the local monotone

property as much as possible. The kind of error tolerant behavior considered here are

similar in nature to algorithms for voice recognition or character recognition problems.

Thus, it would be difficult to “guarantee” that the clustering algorithm always

produces a desirable solution (such as one that is a fixed percentage away from the

so-called “optimal solution”); the result should be justified through benchmark data

and real life experiences.

We assume the error rate is reasonably small, say less than 10%; the clone

coverage is large enough, and most clones contain enough number of probes in order

for the feature structure to be more prominent. In case the latter assumptions are too

 7

strong, we shall modify some threshold values in the algorithm accordingly. Our

philosophy is that, in order to determine whether a piece of information (such as two

clones overlap in some probe) is a valid signal or a noise we check the neighborhood

data to see whether they conform “approximately” to a particular local structure

dictated by the problem. The probability that an isolated piece of spurious information

will have a well-behaved neighborhood structure is nil. More precisely, in our

analysis, if there is enough valid information in the input data, then a certain

monotone structure of the (0,1)-pattern in the neighborhood will emerge which will

allow us to weed out most errors. If some crucial piece of information is missing or

some local data is too noisy, our COT can often detect this and suggest additional lab

work that could reduce the degree of ambiguity for that part.

Our clustering algorithm has the following features:

1. If the original matrix satisfies the COP, then the algorithm will produce a column

ordering realizing it without any fill-in.

2. Under moderate assumptions, the algorithm can accommodate the following four

types of errors: FNs, FPs and NPs and CCs. Note that in some cases (low quality

EST marker identification), NPs occur because of repeat sequences.

3. In case some local data is too noisy, our algorithm could likely discover that and

suggest additional lab work that could reduce the degree of ambiguity in that part.

4. A unique feature of our algorithm is that, rather than forcing all probes to be

included and ordered in the final arrangement, our algorithm would delete some

probes. Thus, it could produce more than one contig. The gaps are created mostly

by noisy columns.

 Experimental results (to be described in Section 5) show that, when the error

percentage is small, our clustering algorithm is robust enough to discover certain

errors and to correct them automatically most of the time.

 In summary, we have modified previous rigid algorithms for testing consecutive

ones into one that can accommodate clustering techniques, and produces satisfactory

approximate probe orderings for most data. The remaining sections are arranged as

follows. Section 2 gives the basic definitions. A COT modified from Hsu (2002) is

discussed in Section 3, which forms the basis for our error-tolerant algorithm. Section

4, the main part of this paper, illustrates how we deal with these four types of errors in

the input data. Section 5 gives the experiemntal results.

 8

2. Basic Definitions

Let M be an m × n (0,1)-matrix whose total number of ones is r. Denote by R(M) the

set of rows of M and C(M) the set of columns. Then |R(M)| = m and |C(M)| = n. We

use v to denote a general column and u to denote a general row. For each row u in

R(M), let CL(u) be the set of columns that contain a nonzero in this row. For any

subset R' of R(M) define CL(R') to be the set of columns that have a nonzero entry in a

row of R'. For each column v in C(M), let RW(v) be the set of rows that contain a

nonzero entry in this column. For any subset C’ of C(M), define RW(C’) to be the set

of rows that contain a nonzero entry in a column of C’. A subset of CL(u) is denoted

by a sub-row of row u. Denote the size of a row u by |CL(u)|, and the size of a column

v by |RW(v)|. Label the rows according to an ascending order of their sizes, and the

columns in arbitrary order. For convenience, we shall not distinguish between the two

terms, "row" (resp. "column") and its corresponding "row index" (resp. "column

index").

 Two rows x and y are said to overlap if they have a nonzero entry in a common

column, and they are said to be independent if they do not share a nonzero entry. A

row x is said to be contained in another row y if no entry of x is greater than the

corresponding entry of y, and a containment is said to be proper if at least one entry of

x is less than the corresponding entry of y. Two rows x and y are said to overlap

strictly if they overlap but neither is contained in the other. The strictly overlapping

relationships on the rows play an important role in checking the consecutive ones

property.

3. A modified Consecutive Ones Test

Although there exist several linear time algorithms for the COT, there is no obvious

way to modify these algorithms to incorporate small errors in the data. For example,

in Booth and Lueker’s PQ-tree algorithm, a single error would terminate the

construction of the PQ-tree. A similar phenomenon occurs in Hsu’s decomposition

approach.

 There are two main ideas in Hsu’s (2002) approach: (1) consider a local

monotone triangular property as described in this paper; (2) find a “good” row

ordering to be tested iteratively rather than using the breadth-first-order as in

 9

Fulkerson and Gross (1965). The modified version in Section 2 does not require a

good row ordering and relaxes the running time to O(n2), but maintains the

implementation of the monotone triangular property. The increase in time complexity

allows us to restore the triangular property under the influence of false positives and

false negatives. We shall first describe a quadratic time COT based on Hsu (2002) in

this section. The main reason to describe such a test is to define the “monotone”

neighborhood structure, which is a key feature for our clustering algorithm.

 The main idea of this COT can be described as follows. The rows are processed

according to an ascending order of their sizes (rather than following a specific

pre-computed order as in Hsu (2002)). During each iteration, we determine the unique

order of all columns within CL(u). Since smaller rows are processed before larger

ones, we can guarantee that whenever a row u is being processed, any row that is

properly contained within u originally must have been processed, and the unique

ordering of columns in CL(u) can be obtained. If |CL(u)| > 1, then at the end of the

iteration, all but two columns are deleted and a special row containing these two

undeleted columns is generated. Thus, the matrix is further reduced. The reason for

creating the special row is to preserve the COP for the original matrix. This process

continues until all original rows are processed. The main iteration of the algorithm is

described in Figure 1.

 At each iteration, the columns of CL(u) are partitioned into sets, say S1, S2, ..., Sd,

with a fixed left-right ordering (however, the column orders within each set are

arbitrary). Such a partition naturally induces a collection of column orderings in

which columns in each Si are arranged consecutively in an arbitrary ordering and the

column groups of the Sis are arranged from left to right according to the order S1,

S2, ..., Sd. To describe the algorithm we need the following definitions.

Definition 3.1. A collection of sets is said to be monotone if for every two sets S1, S2

in the collection, either S1 ⊇ S2 or S2 ⊇ S1.

Lemma 3.2. If a collection of sets S1, S2, …, Sn is monotone (and non-increasing in

size), then the collection of sets { T(x) | x∈ S1∪ S2 ∪…∪ Sn} is monotone, where

T(x)={ i | x∈ Si}.

Definition 3.3. A row u is said to be compatible with a column partition S1, S2, ..., Sd

in which the Sjs are ordered from left to right if it satisfies that CL(u) ∩ [S1 ∪ S2

∪ ...∪ Sd] ≠ ∅ and

 10

1. Either (1) CL(u) ⊆ [S1 ∪ S2 ∪ ...∪ Sd], in which case let Sj1 (resp. Sj2) be the

leftmost (resp. rightmost) set having nonempty intersection with CL(u). Then all

sets in between (but excluding) Sj1 and Sj2 are contained in CL(u).

Or (2) CL(u) - [S1 ∪ S2 ∪ ...∪ Sd] ≠ ∅, in which case let Sj be any set having

nonempty intersection with CL(u). Then either all sets to the right of Sj are

contained in CL(u) or all sets to the left of Sj are contained in CL(u).

 The main iteration of our algorithm is described in Figure 1 below:

The COT Algorithm: Processing an original row u

1. If |CL(u)| ≤1, delete u. Proceed to the next row.

2. Mark all columns in CL(u). Determine RW(v) for each v in CL(u). For each row w in some RW(v)

for v in CL(u) (w is a row that overlaps u), count |CL(w) ∩ CL(u)|.

3. Based on |CL(w) ∩ CL(u)|, construct the following set: C(u) = { w | w properly contains u }, D(u) =

{ w | CL(w) ≠ ∅ and w is properly contained in u }, I(u) = { w | w is identical to u } and STA(u) =

{w | w overlaps strictly with u}.

4. Let u* be a row in STA(u) with the largest |CL(u*) ∩ CL(u)|.

Let v* be a column in CL(u)-CL(u*) with the largest | STA(u) ∩ RW(v) |.

5. Let A(u) = STA(u) ∩ RW(v*).

Let B(u) = STA(u) - A(u).

6. Let vA be a column in CL(A(u)) ∩ CL(u) with the largest |RW(vA) ∩ A(u)|.

Let vB be a column in CL(B(u)) ∩ CL(u) with the largest |RW(vB) ∩ B(u)|.

7. Partition CL(u) using sub-rows in the three sets { CL(w) ∩ CL(u) | w ∈ A(u) }, { CL(w) ∩ CL(u) |

w ∈ B(u) } and { CL(w) ∩ CL(u) | w ∈ D(u) } to obtain a unique partition. We need to check the

following:

7.1 The two sets of sub-rows { CL(w) ∩ CL(u) | w ∈ A(u) }, { CL(w) ∩ CL(u) | w ∈ B(u) }

are monotone and CL(u) can be uniquely partitioned with vA, vB placed at one end,

respectively. Every sub-row in one set is compatible with the column partition determined

by the other set.

7.2 Every row in D(u) is compatible with the column partition determined by the above two

sets and the remaining rows in D(u).
7.3 If there is any violation, then M does not satisfy the COP and we can terminate the

algorithm.

8. Delete all columns in CL(u) except vA and vB. Construct a new specials row uS with

CL(uS)={vA,vB}. Proceed to the next row.

Figure1. The COT Algorithm.

 11

 We shall prove in Theorem 3.7 that, for a matrix M, the COT algorithm decides

whether M satisfies the COP correctly. Several lemmas are needed for the proof of

Theorem 3.7. Below, we shall follow the notations used in the COT algorithm.

Lemma 3.4. If a (0,1)-matrix M satisfies the COP, then the collections { CL(w) ∩

CL(u) | w ∈ A(u) }and { CL(w) ∩ CL(u) | w ∈ B(u) } are monotone.

Proof. We shall prove that { CL(w) ∩ CL(u) | w ∈ A(u) } is monotone. The proof

that { CL(w) ∩ CL(u) | w ∈ B(u) } is monotone is symmetric. Let π be a column

permutation of M that realizes the COP. Since columns in CL(u) are consecutive in π,

columns in CL – CL(u) could be partitioned into two disjoint sets, say LF(u) and

RT(u), such that the π-index of each column in LF(u) is less than the π-index of each

column in CL(u), and the π-index of each column in RT(u) is greater than the π-index

of each column in CL(u). Without loss of generality, assume CL(u*) - CL(u) ⊆ RT(u),

where u* is a row in STA(u) with the largest |CL(u*) ∩ CL(u)|. It is easy to check that

A(u) = { w | CL(w) - CL(u) ⊆ LF(u), |CL(w) ∩ CL(u)| < |CL(u)| } and B(u) = { w |

CL(w) - CL(u) ⊆ RT(u), |CL(w) ∩ CL(u)| < |CL(u)| }. Figure 2 gives an example of the

sets A(u) and B(u). Since M satisfies the COP, the π-index of columns in CL(w) ∩

CL(u) for w∈A(u) are π-1(s), π-1(s+1),…, π-1(s + |CL(w) ∩ CL(u)| -1). For any two

rows w1 and w2 in A(u), if |CL(w1) ∩ CL(u)| ≤ |CL(w2) ∩ CL(u)|, then CL(w1) ∩

CL(u) ⊆ CL(w2) ∩ CL(u). Hence, { CL(w) ∩ CL(u) | w ∈ A(u) } is monotone. █

B(u)

A(u)

uLF(u) RT(u)

v*

u*

Figure 2. The sets A(u) and B(u) of a matrix satisfying the COP

Since STA(u) is the disjoint union of A(u) and B(u), we have

 12

Corollary 3.5. If M satisfies the COP, then { CL(w) ∩ CL(u) | w∈STA(u) }can be

partitioned into two monotone collections uniquely.

Lemma 3.6. Let MA(u) be the submatrix of M consisting of rows in A(u) and columns

in CL(A(u)) ∩ CL(u). If { CL(w) ∩ CL(u) | w ∈ A(u) } is monotone, then columns

in CL(A(u)) ∩ CL(u) can be partitioned uniquely with vA at one end, such that the

column partition induces a collection of column orderings that realize the COP of

MA(u). Similarly, columns in CL(B(u)) ∩ CL(u) can be partitioned uniquely with vB

at one end of MB(u).

Proof. If { CL(w) ∩ CL(u) | w ∈ A(u) } is monotone, then { A(u) ∩ RW(v) | v ∈

CL(A(u)) ∩ CL(u)} is monotone from lemma 3.2. Partition columns in CL(A(u)) ∩

CL(u) into ordered set S1, S2, …, Sn such that for any two columns v1 and v2 in

CL(A(u)) ∩ CL(u), we have the following:

1. For v1 and v2 in the same set, A(u) ∩ RW(v1) = A(u) ∩ RW(v2)

2. For v1 ∈ Si and v2 ∈ Sj such that i < j, A(u) ∩ RW(v1) ⊂ A(u) ∩ RW(v2).

Thus, the above partition S1, S2, …, Sn is an column partition with vA at one end,

which induces a collection of column orderings realizing the COP of MA(u). The proof

for MB(u) is symmetric. █

Theorem 3.7. A (0,1)-matrix M satisfies the COP iff the following conditions hold at

each iteration of the COT algorithm :

The two sets of sub-rows { CL(w) ∩ CL(u) | w ∈ A(u) }, { CL(w) ∩ CL(u) | w ∈ B(u) }

are monotone and can be uniquely partitioned with vA, vB placed at one end,

respectively. Every sub-row in one set is compatible with the column partition

determined by the other set.

Every row in D(u) is compatible with the column partition determined by the above

two sets and the remaining rows in D(u).

Proof. If a matrix M satisfies the COP, from lemma 3.4 one can easily check the

necessity of these conditions. Note that condition 2 simply indicates that the order of

rows in D(u) considered for the partition is immaterial.

 Conversely, we shall use induction on |CL(M)|. Assume the statement is true for

matrices smaller than M. From lemma 3.6, if these conditions are satisfied at every

iteration, then for each row u processed, The COT Algorithm determines a partition,

say P(u), of CL(u) as follows. Form a unique partition of CL(A(u)) ∩ CL(u) based on

the monotone collection { CL(w) ∩ CL(u) | w ∈ A(u) } in which vA (in step (7) of

 13

the COT Algorithm) is at one end (this forces a unique partition). Likewise, form a

unique partition of CL(B(u)) ∩ CL(u) with vB at one end. Refine these two partitions

based on their overlapping compatible rows. Now, further refine this partition by

bringing in compatible rows in D(u) one by one.

 Let k be the first iteration that some columns are deleted in step (8) of Algorithm

COT. Let M' be the reduced matrix. Since |CL(M’)| < |CL(M)| and the two conditions

in Theorem 3.7 are satisfied at every iteration after iteration k, by the induction

hypothesis, M' satisfies the COP. Consider any column permutation of M' realizing

the COP for the rows, say v’1, v’2, … , v’d. Denote the partition P(uk) by S’1,

S’2, … ,S’h, where the two special columns vk
A ∈ S’1and vk

B ∈ S’h. Since {vk
A, vk

B} is

the column set of the special row uS, we must have vk
A = v’j and vk

B = v’j+1 for some j.

Now, insert the deleted columns of CL(uk) via P(uk) back to get a column partition v’1,

v’2, …v’j-1, S’1, S’2, … ,S’h, v’j+1, … , v’d that realizes the COP for M. Therefore, these

conditions are also sufficient. █

 If the given matrix M satisfies the COP, then the COT Algorithm will yield a

column permutation with consecutive ones in each row. Otherwise, the algorithm will

terminate in step (7) at some iteration.

4. Treating the Errors
In this section, we present an error-tolerant version of the COT algorithm. We shall

simultaneously consider the following four types of errors in the data set: NPs, CCs,

FPs and FNs. We assume the number of FPs is at most a quarter of that of FNs (which

seems to be practical for most biological experiments). Such an assumption is

important because FPs are much more troublesome than FNs.

Note that the position of a FP in a clone may be far from those of the other probes

in the clone. This kind of FPs will be denoted by remote FPs. Figure 3 gives an

example of remote FPs. Since remote FPs, NPs and CCs are most disruptive, we shall

try to eliminate them first. After they have been removed, we then remove the

remaining FPs and FNs. In these clustering algorithms, we need to set different

threshold values for detecting various errors. Whenever possible, we shall provide

motivations for these threshold values by proving some lemmas for the ideal

situations. Since we do not generate a lot of long clone segments in the simulated data,

decomposition is usually unnecessary.

 14

Because different types of errors could tangle with each other, the order of the

error elimination process is very crucial. This is summarized in the Error-Tolerant

COT algorithm in Section 4.5. It is interesting to note that, in our approach, the

algorithm for eliminating NPs and CCs simultaneously discover remote FPs. Hence, it

is an integral part of the is alongside the elimination of. Namely, regardless of

whether there are NPs or CCs in the data, we need to execute the algorithms in

Sections 4.1 and 4.2 just to ensure remote FPs are eliminated.

Remote false positive

Figure 3. An example of remote false positives

4.1. Screening out Non-unique probes and Related Remote False Positives

Consider a NP v. Roughly speaking, because probe v appears in different places of the

DNA sequence, the rows containing v will form two or more clusters based on their

neighbor overlapping relationships. Therefore, for each column v’, we adopt a

clustering method, called row-neighbor clustering, to determine if there exist two or

more clusters for the rows containing column v’, in order to decide whether v’ is a NP.

Figure 4 gives an example of two clusters NUP1 and NUP 2 containing the NP v.

NUP 1

NUP 2

Non-unique probev

Figure 4. An Example of a non-unique probe.

Sometimes, a remote FP may generate another cluster, for example, the cluster

NUP2 in Figure 5. Those can be screened out using the row-neighbor clustering

analysis. Note that some local (close-by) FPs may not generate another clusters, and

 15

could not be detected using the row-neighbor clustering analysis. We shall detect

those using the monotone structure described in section 4.4.

From the above discussion, we shall screen out NPs and related remote FPs using

a clustering analysis on RW(v).

Definition 4.1.1. The overlap function OV(u,w) between two rows u and w in RW(v) is

the number of columns that are contained in both u and w, namely, |CL(u) ∩ CL(w)|.

If OV(w1,u) > OV(w2,u), we say w1 is closer to u than w2. The overlap function OV(u,S)

between row u and a set S of rows is defined to be S)v,u(OV
Sv∑ ∈∀

, which

measures the degree of overlapping between row u and rows in S.

NUP 2

NUP 1

Remote false positive

v

Figure 5. An example of a cluster generated by remote FPs

Lemma 4.1.2. Let M be a (0,1)-matrix satisfying the COP in which each row has size

L. Let π be a column permutation of M that realizes the COP. For any two columns v1

and v2 of M, if |π -1(v1) - π -1(v2)| ≥ 2L - 2, then OV(u1,C) > OV(u2,C) for any two rows

u1 in RW(v1), u2 in RW(v2), and any subset C of RW(v1).

Proof. Since u1 ∈ RW(v1), for all w ∈ RW(v1), we have v1 ∈ CL(u1) ∩ CL(w) and

OV(u1,RW(v1)>1. Without lost of generality, assume π -1(v1) < π -1(v1), then π -1(v2) ≥

2L – 2 + π -1(v1) and for any u2 ∈ RW(v2) and w ∈ RW(v1), | CL(u2) ∩ CL(w) | ≤1.

Thus, we have OV(u2,RW(v1) ≤1 < OV(u1,RW(v1) and the lemma is proved. █
Lemma 4.1.3. Let M be a (0,1)-matrix satisfying the COP in which each row has size

L. Let π be a column permutation of M that realizes the COP. Let v1 and v2 be any two

columns of M such that |π -1(v1) - π -1(v2)| ≥ 2L – 2. Let C be a subset of RW(v1) and u

a row not in C with maximum OV(u,C). If u ∈ RW(v2), then C= RW(v1).

Proof. Assume that u ∈ RW(v2), and C≠ RW(v1).islet w be a row in RW(v1) - C. Since

u is a row not in C with maximum OV(u,C), we have OV(u,C) > OV(w,C). However,

since u ∈ RW(v2) and w∈ RW(v1), this is contradictory to lemma 4.1.2. █
According to the above property, we can easily derive the following for a NP

 16

Corollary 4.1.4. Assume there are no CCs, FPs and FNs, and there is a NP

appearing in positions p1 and p2 of the DNA sequence. Let NUP1 be the cluster of

rows that contain the position p1 and NUP2 be the cluster of rows that contain the

position p2. Let NUP’ be a subset of NUP1 and u a row not in NUP’ with maximum

OV(u,NUP’). If u ∈ NUP2, then NUP’ = NUP1.

Our clustering algorithm constructs clusters one by one as follows. First, select

the shortest unselected row to be the initial element of a cluster. Then consider the

row, say unearest, that has the maximum overlap value with the cluster NUP. If

OV(unearest, NUP) is greater than a threshold value d, add unearest into the cluster.

Otherwise, terminate the construction for the current cluster and start a new cluster. In

our experiments, d is set to be 2, which seems to get good clustering performance.

The details are described in Figure 6.
The ROW-NEIGHBOR CLUSTERING Algorithm.

1. Let i be1 and S = RW(v). Set the threshold value to be 2.

2. Let NUPi = { uinit }, where uinit is the shortest row in S. S ← S – { uinit }.

3. Let unearest be the row in S with maximum OV(unearest, NUP i). If OV(unearest,NUP i) > d, then NUP i ←

NUPi ∪ { unearest }, S ← S – { unearest }. Repeat this step until OV(unearest, NUP i) < d.

4. Start a new cluster NUP i+1 and reiterate Step 2 and Step 3 until all rows in S are processed.

Figure 6. The ROW-NEIGHBOR CLUSTERING Algorithm.

After clustering, rows in RW(v) are partitioned into several clusters NUP1,

NUP2, …, NUPk. Note that a cluster can be generated either by a NP or by a remote

FPs. We use the following criteria to determine which is the case. If the number of

rows in a cluster is no greater than a threshold d (normally 3), we shall conclude that

this cluster is generated by remote FPs. Row entries in NUPi which are FPs will be

deleted. Since we assume the error rate of the false positive is from 0.6% to 2% (the

total error rate for FPs and FNs together is from 3% to 10%), the probability that more

than three FPs appear in the same column is very slim. The threshold value will be set

according to the estimated FP rate of the data set, that is, the lower the FP rate the

lower the threshold value. Since undetected FPs create catastrophic probe ordering,

our threshold value is usually set higher in favor of the conclusion that a cluster is

generated by FPs rather than by a NP. The trade-off is that we shall then have more

probes deleted. The algorithm is summed up in Figure 7.
The NUP_RFP_SCREENING Algorithm.

Partition RW(v) into clusters NUP1, NUP2, …, NUPk using the The ROW-NEIGHBOR CLUSTERING

algorithm.

 17

If a cluster NUPi contains more than three rows, then we conclude that NUPi is generated by a NP v.

Delete rows in NUPi from RW(v) and generate a new column vNUPi such that RW(vNUPi) = NUPi.

Otherwise, columns in NUPi are generated by remote FPs of rows in NUPi. Eliminate these

remote FPs by deleting entries in NUPi.

Figure 7. The NUP_RFP_SCREEING Algorithm.

A complication can occur in step (1) above when we determine the clusters of

RW(v). Since it is possible for two nearby probes to form a NP, we might incorrectly

place all rows in RW(v) into the same cluster. However, such a NP normally does not

create any serious problem since this NP column might generate several FPs and can

be remedied by the FPs and FNs detection algorithm discussed later. Figure 8 is an

example that the two clusters of RW(v) be viewed as one cluster incorrectly.

Non-unique probe

False positives

Figure 8. An example of two nearby probes being viewed as a non-unique
probe

4.2. Screening out Chimeric Clones and Related Remote False Positives

The idea to screen out CCs is very similar to that of NP screening. Consider a CC u,

which is formed by two or more normal clones. Figure 9 gives an example of a CC

composed from two normal clones, where RC1 and RC2 denote the neighborhood of

these two clones.

 18

RC1

RC2

A chimeric row

Figure 9. An example of a chimeric clone

Similar to the case of NPs, a cluster might be generated by a FP. Figure 10 gives

an example of a cluster Rv generated by a remote FP.
 A remote false positive vu

Rv

Figure 10. An example of a cluster Rv generated by a remote FP

We use the ROW-NEIGHBOR CLUSTERING algorithm described in the previous

section to partition RW(CL(u)) into several clusters. Since our preliminary clustering

strategy might over-split the RW(CL(u)) into more clusters than necessary, some

clusters will be merged back. Figure 11 gives an example of two clusters that should

be merged, where rows in cluster RCi and rows in RCj all overlap the same normal

clone u.

 u

RCi

RCj

Figure 11. An example of two clusters that should be merged

Two clusters RCa and RCb will be merged if | CL(RCa) ∩ CL(RCb) ∩ CL(u) | > 3,

Since we assume the error rate of FPs and FNs is normal than 5%, columns in CL(RCa)

 19

∩ CL(RCb) ∩ CL(u) might be consecutive with high probability. After this merging

process, the clusters of RW(CL(u)) are fixed. Based on these clusters, we can now

partition CL(u) into subset CC1, CC2, …, CCk such that v belong to CCt, where RCt is

the cluster with the largest |{w| v∈ CL(w) and w∈ RCt }|. Similar to the NP screening,

each subset of CL(u) corresponds to either a normal clone segment or a set of remote

FPs, and we use the following criteria to determine which is the case. If there are less

than or equal to three columns in a subset, we shall conclude that the subset is a set of

remote FPs. Since we assume the error rate of the FPs is at most 2%, the probability

that more than three false positives appear in the same row is very slim. Note that the

above threshold value can be modified for different data set as we discussed above.

Column entries in CCi that are FPs will be deleted. The overall CC and related remote

FP screening algorithm is described in Figure 12.
The CC_RFP_SCREEING Algorithm.

1. Partition RW(CL(u)) into clusters using the ROW-NEIGHBOR CLUSTERING algorithm.

2. Merge two clusters RCa and RCb if | CL(RCa) ∩ CL(RCb) ∩ CL(u) | > 3.

3. Partition CL(u) into subsets CC1, CC2, …, CCk. If RCt is a cluster with the largest |{w| v∈ CL(w)

and w∈ RCt }| value, then places v into CCt,

4. If a subset CCi has more than three columns, then we regard CCi as a clone segment. Construct a

new row uCCi with CL(uCCi) = {v | v∈CCi }. Otherwise, conclude that it is generated by remote FPs.

Eliminate these remote FPs by deleting entries in CCi.

Figure 12. The CC_RFP_SCREEING Algorithm.

Similar to the clustering of NP, a complication can occur in step (1) above when

we determine the clusters of RW(CL(u)). Since it is possible that two nearby clones

form a CC, we might incorrectly place all rows in RW(CL(u)) into the same cluster.

However, such a mistake normally would not create a serious problem since this CC

might generate several FNs and can be remedied by the FPs and FNs detection

algorithm discussed later. Fig 13 gives such an example.

 20

False negatives

A chimeric row u

row u

Fig 13. An example of two nearby clones being viewed as a chimeric clone

4.3. The Error-Tolerant Clustering of rows overlapping row u

The clustering algorithm discussed in this section forms the heart of our approach,

which is based on neighborhood clustering. Assume there are no NPs, CCs or remote

FPs, and we only have to deal with local FPs and FNs.

Consider the classification of rows overlapping row u. For a matrix M satisfying the

COP, rows overlapping u can be partitioned into A(u), B(u) (as in the COT algorithm),

C(u), D(u) and I(u) (as described in Figure 16). Such a classification can be carried

out based on the overlapping relationships between those rows and LF(u), RT(u)

(defined in lemma 3.4). Let LL(u) denote the set LF(u) ∩ RW(CL(u)), and RR(u)

denote the set RT(u) ∩ CL(RW(CL(u))). That is, each row in A(u) should overlap with

LL(u) only, each row in B(u) should overlap with RR(u) only. Any row overlapping

both LL(u) and RR(u) must be in C(u), and any row overlapping none of LL(u) and

RR(u) should be in D(u) or I(u). Figure 14 gives an example of LL(u) and RR(u).

 21

A(u)

u

B(u)

LL(u) RR(u)

Figure 14. Example of LL(u) and RR(u)

 The proof of the following lemma is similar to that of lemma 3.4.

Lemma 4.3.1. If a (0,1)-matrix M satisfies the COP, then the collections { RW(v) |

v∈LL(u) } and { RW(v) | v ∈ RR(u) } are monotone.

In the event that the data contain errors, the classification of LL(u) and RR(u) could

be obtained through a clustering analysis on CL(RW(CL(u))) - CL(u) based on Lemma

4.3.1. Let d(u,v) denote the Hamming distance between row u and row v, and D(u,S) =

Svud
Sv∑ ∈∀

),(denote the Hamming distance between row u and a set S of rows.

The classification of LL(u) and RR(u) is described in Figure 15. Define MSTA(u) to be

the submatrix of M consisting of rows in STA(u) and columns in CL(STA(u))-CL(u).

An example is illustrated by the shaded entries in Figure 14.
The LL-RR-CLASSIFICATION Algorithm

1. Denote the rows of MSTA(u) by R(MSTA(u)) and the columns of MSTA(u) by C(MSTA(u))

2. Let b1 be the shortest column of C(MSTA(u)) and b2 the shortest column among C(MSTA(u)) -

CL(RW(b1)). Let LL(u) = {b1} and RR(u) = {b2}.

3. Classifying columns in CLSTA(u) – {b1, b2} by Step 4 according the ascending ordering of their

sizes.

4. If D(vi,LL(u)) < D(vi,CLSRR(u)) then LL(u) ← LL(u) ∪ {vi}, otherwise RR(u) ← RR(u) ∪ {vi}.

Figure 15. The LL-RR-CLASSIFICATION Algorithm.

Due to FNs and FPs, some of the overlapping relationships between rows

overlapping row u, LL(u) and RR(u) might be incorrect. We shall distinguish these

errors as follows. For a column w in A(u), we should have CL(w)-CL(u) ⊆ LL(u) and

CL(u)-CL(w) ≠ ∅. However, in case CL(w) ∩ RR(u) ≠∅, we conclude that entries in

{(w,v) | v ∈ CL(w) ∩ RR(u)} are FPs. Similarly, for a column w in B(u), we should

have CL(w)-CL(u) ⊆ RT(u) and CL(u)-CL(w) ≠ ∅. In case CL(w) ∩ RR(u) ≠ ∅, we

conclude that entries in {(w,v) | v∈ CL(w) ∩ RR(u)} are FPs. For a column w in C(u),

 22

CL(u)-CL(w) should be empty. In case CL(u)-CL(w) ≠ ∅, we conclude that entries in

{(w,v) | v∈ CL(u)-CL(w)}} are FNs. Such a classification scheme is summarized in

Figure 16.
The NEIGHBOR-CLASSIFICATION Algorithm: Classify a row w.

1. Calculate the error functions of row w as follows:

EA(w)= |{(w,v) | v ∈ CL(w) ∩ RR(u)}|,

EB (w)= |{(w,v) | v ∈ CL(w) ∩ LL(u)}|,

EC (w)= |{(w,v) | v ∈ CL(u) - CL(w)}|.

2. Classify w into A(u), B(u), C(u), D(u) and I(u) according to the following definitions:

 A(u) = { w | CL(w)-CL(u)≠∅ and EA(w)< EB (w) and EA(w) < EC (w)},

B(u) = { w | CL(w)-CL(u)≠∅ and EB (w) < EA(w) and EB(w) < EC (w)},

C(u) = { w | CL(w)-CL(u)≠∅ and EC(w)< EA (w) and EC(w) < EB (w)},

D(u) = { w | CL(w) ⊂ CL(u) },

I(u) = { w | CL(w) = CL(u) } .

Figure 16 The NEIGHBOR-CLASSIFICATION Algorithm

 Note that the determination of local FPs and FNs is a relative matter. Namely, one

can change the phenomenon of a FP to that of a FN by changing the threshold value

and there is a trade-off in deciding between the FPs and the FNs.

 Finally, consider possible FNs within row u itself. Since FN entries of row u are

likely column entries in the neighboring rows of u, they could be classified into LL(u)

or RR(u). Without lost of generality, let v’ be such a FN column in LL(u). Consider the

following two cases:

Case 1: RW(v’) ∩ B(u) ≠ ∅.

 In the NEIGHBOR-CLASSIFICATION algorithm, if w ∈ RW(v’) ∩ B(u), the entry

(w,v’) will be considered as a FP of row w. However, if (u,v’) is a FN, the entry (w,v’)

for w ∈ RW(v’) ∩ B(u) might not have to be considered as a FP. We use some

threshold value to make the decision. If |RW(v’) ∩ B(u)| is greater than a threshold

value, say 3, v’ will be considered as a FN of row u with high probability. Otherwise,

w ∈ RW(v’) ∩ B(u) for w ∈ RW(v’) ∩ B(u) will be still considered as FPs. For

example, in Figure 17, the entry (u,v’) will be considered as FN of row u itself since

the number of the entries pointed by the arrow (FPs decided by

NEIGHBOR-CLASSIFICATION algorithm) is greater than the threshold value.

 23

A(u)

u

B(u)

LL(u) RR(u) v’

False positives decided by the
NEIGHBOR-CLASSIFICATION
algorithm

False negative

Figure 17. Case 1 of the false negatives within row u itself

Case 2: RW(v’) ∩ B(u) = ∅.

 If w* is a special row in A(u). The entries in {(w,v’)| w ∈ RW(v’) ∩ D(u) and

CL(w) ∩ CL(w*) ≠ ∅} will be considered as FPs of row w due to w*. Similarly, if

(u,v’) is a FN, those (w,v’) entries might not have to be FPs. We also use a threshold

value to make the decision. If the cardinality of |{(w,v’) | w ∈ RW(v’) ∩ D(u) and

CL(w) ∩ CL(w*) ≠ ∅}| is greater than a threshold value, say 3, (u,v’) will be

considered as a FN, otherwise the entries in {(w,v’)| w ∈ RW(v’) ∩ D(u) and CL(w) ∩

CL(w*) ≠ ∅} will be considered as FPs. For example, in Figure 18, the entry (u,v’)

will be considered as FN of row u itself, since the number of the entries pointed by the

arrow (FPs due to special row u*) is greater than the threshold value.

u

B(u)

LL(u) RR(u) v’

D(u)

False negative

w*

False positives
due to w*

A(u)

Figure 18. Case 2 of the false negatives within row u itself

4.4 Deciding Column Orderings under the Influence of Local False Negatives

 24

and False Positives

In this section, we partition CL(u) into ordered sets that induces a collection of

column orderings under local FNs and FPs. The monotone collections related to A(u)

and B(u) both inside the set CL(u) and outside it provide a very strong structural

property for matrices satisfying the COP. This structure is stable enough for us to

obtain a “good” column partition of CL(u) even when the input matrix contains errors.

In case there are a few 1's missing from the input data (FNs) in A(u) or B(u), they

can be inferred from the monotone structure. For example, in Figure 19, the

collections of sets {A(u) ∩ RW(v’) | v’∈CL(u)} do not satisfy the monotone property.

However, they will if the 0-entry pointed by the arrow is changed to 1. Thus, this

particular 0-entry can be inferred to be a FN by the monotone property. Similarly, if

there are a few 1's in A(u) or B(u) which should have been 0's, then they can be

inferred to as FPs. For the same example in Figure 19, when the 1-entry pointed by

the arrow is changed to 0, the collection {B(u) ∩ RW(v’) |v’∈CL(u)} will satisfy the

monotone property.

A(u)

B(u)

False Negative

False Positive

u

 Figure 19. FP and FN errors

In general, if a collection of sets does not satisfy the monotone property, we could

remove some elements and add some other elements into sets in the collection so that

the monotone property is satisfied. We denote the removed elements as removals and

the added elements as fill-ins. The removals could be considered as FPs “determined”

by the system, and the fill-ins could be considered as FNs. Hence, one objective of

removing FPs and FNs is to minimize the total number of fill-ins and removals

needed to modify { A(u) ∩ RW(v) | v∈CL(u) } and {B(u) ∩ RW(v) | v∈CL(u)} to

 25

satisfy the monotone property simultaneously. Note that the minimum fill-in problem

is NP-complete [Yannakakis 1981] and a polynomial approximation algorithm for this

problem with at most eight times the optimum have been proposed in [Natanzon et al.

1998]. However, it is not known whether finding the minimum total number of fill-ins

and removals is still NP-hard. In order to deal with the compatibility of sub-rows in

{ CL(w) ∩ CL(u) | w ∈ A(u) } and { CL(w) ∩ CL(u) | w ∈ B(u) }in a more concise

fashion, we shall consider the following collection of sets S(u) = { RW1(v) | v∈CL(u)}

Definition 4.4.1. For each column v in CL(u), define the special set of row indices

RW1(v) associated with u to be (A(u) ∩ RW(v)) ∪ (B(u) - RW(v)), where A(u), B(u)

and RW(v) are considered as sets of row indices rather than sets of rows.

An example of a RW1(v) is shown in Figure 20. Note that each RW1(v) is not a

sub-column of M; rather, it could be regarded as an “artificial column”. Since B(u) -

RW(v) and B(u) ∩ RW(v) is a partition of the set of row indices in B(u), B(u) - RW(v)

is the complement of B(u) ∩ RW(v) for column v. Thus, for each row w ∈ A(u), w ∈

RW1(v) iff w ∈ RW(v), and for each w ∈ B(u), w ∈ RW1(v) iff w ∉ RW(v). The

purpose of introducing S(u) = { RW1(v) | v∈CL(u)} is that, originally, we need to

check the monotonicity of two sets of sub-rows, { CL(w) ∩ CL(u) | w ∈ A(u) },

{ CL(w) ∩ CL(u) | w ∈ B(u) } as well as the compatibility of these two sets; but now,

these can all be reduced to checking the monotonicity of the set S(u) as proved below.

A(u)

B(u)

u

False Negative

(original) False Positive

RW1(v)

Figure 20. An example of { RW1(v) | v∈CL(u)}.

Lemma 4.4.2. S(u) ={ RW1 (v) | v∈CL(u)} is monotone iff

 26

1. the two sets of sub-rows { CL(w) ∩ CL(u) | w ∈ A(u) }, { CL(w) ∩ CL(u) | w ∈

B(u) } are monotone and CL(u) can be uniquely partitioned with vA, vB placed at

one end, respectively.

2. Each row in A(u) is compatible with the column partition determined by { CL(w)

∩ CL(u) | w ∈ B(u) }, and each row in B(u) is compatible with the column

partition determined by { CL(w) ∩ CL(u) | w ∈ A(u) }.

Proof. We first show the “only if” part. Assume S(u) is monotone. Then for any two

columns v1, v2 in CL(u), either RW1(v1) ⊇ RW1(v2) or vice versa. Without loss of

generality, assume RW1(v1) ⊇ RW1(v2). Since RW1(v) is the disjoint union of (A(u) ∩

RW(v)) and (B(u) - RW(v)) for any v, We must have A(u) ∩ RW(v1) ⊇ A(u) ∩

RW(v2) and B(u) - RW(v1) ⊇ B(u) - RW(v2). The former implies that columns in

{ A(u) ∩ RW(v) | v∈CL(u) } are monotone. The latter implies that B(u) ∩ RW(v1) ⊆

B(u) ∩ RW(v2), and thus, columns in { B(u) ∩ RW(v) | v∈CL(u) } are monotone.

From Lemma 3.2, sub-rows in { CL(w) ∩ CL(u) | w ∈ A(u) } and those in { CL(w) ∩

CL(u) | w ∈ B(u) } are monotone.

The monotone property of S(u) implies that elements in the collection can

determine a unique partition of CL(u). Let S1, S2,.., Sd be such a partition that for any

two columns v1 ∈Si , v2 ∈ Sj, RW1(v1) ⊇ RW1(v2), if i < j. We have A(u) ∩ RW(v1) ⊇

A(u) ∩ RW(v2). Recall that vA is a column in CL(A(u)) ∩ CL(u) with the largest

|RW(vA) ∩ A(u)|, thus vA ∈ S1 and vA can be placed at one end of CL(u). Similarly, vB

can be placed at the other end of CL(u) according the monotone property of { B(u) ∩

RW(v) | v∈CL(u) }.

We now show that every row in B(u) is compatible with the column partition

determined by { CL(w) ∩ CL(u) | w ∈ A(u) }. Consider a row w in B(u). Since rows w

and u are strictly overlapping, CL(w) - [S1 ∪ S2 ∪ ...∪ Sd] ≠ ∅. Let Ss be a set having

nonempty intersection with CL(w). For any set St with t > s, and any two columns v1

∈Ss , v2 ∈ St, B(u) ∩ RW(v1) ⊆ B(u) ∩ RW(v2). That is, all sets to the right of Ss are

contained in CL(w). We have shown that every row in B(u) is compatible with the

column partition determined by S(u). Since the column partition determined by S(u) is

a refinement of that determined by { CL(w) ∩ CL(u) | w ∈ A(u) }, we have proved

that every row in B(u) is compatible with the column partition determined by { CL(w)

 27

∩ CL(u) | w ∈ A(u) }. The proof that each row in A(u) is compatible with the column

partition determined by { CL(w) ∩ CL(u) | w ∈ B(u) } is symmetric.

Finally, consider the “if” part. Recall that we can get a unique partition of

CL(A(u)) ∩ CL(u) based on the monotone collection { CL(w) ∩ CL(u) | w ∈ A(u) }

in which vA is at one end (this forces a unique partition). And we can form a unique

compatible partition of CL(B(u)) ∩ CL(u) with vB at the other end. Refine these two

partitions based on their overlapping (compatible) rows, we can get a unique partition

S1, S2,.., Sd of CL(u) such that v1 ∈Si , v2 ∈ Sj, A(u) ∩ RW(v1) ⊇ A(u) ∩ RW(v2) and

B(u) ∩ RW(v1) ⊆ B(u) ∩ RW(v2), if i < j. Thus, RW1(v1) ⊇ RW1(v2), and S(u)

satisfies the monotone property. █

 From lemma 4.4.2, eliminating FPs and FNs can be modeled as minimizing the

total number of fill-ins and removals such that the collection { RW1(v) | v ∈ CL(u) }

after modification satisfies the monotone property. Note that, for w∈A(u), the fill-ins

could be considered as FNs and the removals could be considered as FPs , and for

w∈B(u), the fill-ins could be considered as FPs and the removals could be considered

as FNs. Recall that removals and fill-ins are relative to each other, and there is a

trade-off in determining FPs and FNs. For example, we can allow a “one” to “stay” by

filling in the “missing” elements or we can remove a “one” without filling in any

“missing” element in the corresponding rows (to satisfy the monotone property).

 Our strategy is to detect potential FPs of S(u) (FPs for A(u) and FNs for B(u))

first; remove them and then deal with the fill-ins. A “one” is considered as a FP based

on the following heuristic. Let RW1(v1), RW1(v2) , … , RW1(v|CL(v)|) be a list ordered

according to their ascending sizes. If { RW1(v) | v ∈ CL(u) } satisfies the monotone

property, then we should have RW1(vi) ⊆ RW1(vj) for all i < j. However, since the

input data contain errors, RW1(vi) might not be contained in every such RW1(vj). But,

since the error rate of FNs and FPs is no more than 10%, we expect that RW1(vi) is

contained in RW1(vj) with high probability. For each w ∈ RW1(vi), if |{ j | w ∉ RW1(vj)

for all i < j }| ≥ 3, the entry (w, vi) is considered as a FP, since the probability that

there are more than three fill-ins in the same row is relatively low.

 We now determine the fill-ins to make the collection of sets { RW1(v) | v ∈

CL(u) } satisfy the monotone property. For each column v in CL(u), define the

function, fill-in(v), as the set { (w,v’) | w ∈ RW1(v) and w ∉ RW1(v’) for all v ≠ v’ },

 28

which is the set of elements one needs to fill so that RW1(v’) ⊇ RW1(v) for every other

column v’. The algorithm for detecting FPs and FNs is summarized in Figure 21.
The FP-FN- DETECTION Algorithm

1. Let RW1(v) = (A(u) ∩ RW(v)) ∪ (B(u) - RW(v)).

2. Sort columns in CL(u) into a list {v1, v2,…,v|CL(u)|} according to their ascending |RW1(v)|

values.

3. For each w ∈ RW1(vi), if |{ w | w ∉ RW1(vj) for all i < j }| ≥ 3, then (w, vi) is considered as a

removal. If w ∈A(u), remove w from RW(vi), otherwise, add w to RW(vi) .

4. Select a column v* of CL(u) with the minimum fill-in(v*). Then element (w,v’) in fill-in(v*)

is considered as a fill-in. If w ∈A(u), add w to RW(v’), otherwise, remove w from RW(v’) .

Remove v* from CL(u). Reiterate Step 4 until all columns in CL(u) have been processed.

Figure 21. The FP-FN-DETECTION Algorithm

 Once { RW1(v) | v∈CL(u)} satisfies the monotone property, we can partition

columns in CL(u) into a unique partition based on the monotone collection { CL(w)

∩ CL(u) | w∈A(u) }, in which vA is at one end of the partition; similarly, we can

partition columns in CL(u) into a unique partition based on the monotone collection

{ CL(w) ∩ CL(u) | w∈B(u) }, in which vB is at one end. Refine these two partitions

based on their mutually overlapping compatible rows. Now, further refine this

partition by bringing in compatible rows in D(u) one by one. This gives the final

internal partition of CL(u).

 Furthermore, for each column v, the number of removals and fill-ins generated by

the FP-FN-REMOVE Algorithm provides a good measure for the quality of this

column. The FN error rate, FN(v), of column v could be estimated by number of

fill-ins divided by (number of ones in column v originally - number of removes +

number of fill-ins) and the FP error rate, FP(v), of column v could be estimated by

number of removals divided by (number of zeros in column v originally - number of

fill-ins + number of removes). We rate the confidence of position of column v in four

levels as follows. If FN(v) < 3% and FP(v) <1%, mark the confidence level to be 4

meaning the column information is “reliable”; if FN(v) < 8% and FP(v) <1%, mark

the confidence level to be 3 meaning “believable”; if FN(v) < 16% and FP(v) <1%,

mark the confidence level to be 2 meaning “doubtful”; otherwise, mark the confidence

level to be 1 meaning “problematic”. Thus, high confidence signifies that the

information of column v is relatively reliable (so does its predicted position), and low

confidence signals that there is a potential problem (for the biologists) in this column.

 29

 When it appears that a probe creates a disrupting behavior for its neighboring

clones, this probe could be deleted from further consideration. Thus, rather than

forcing all probes to be included and ordered in the final arrangement, our algorithm

could produce more than one contig.

4.5. A Summary of the Error-Tolerant Algorithm for the COT

Finally, we summarize the above algorithms for dealing with all four types of errors in

this subsection. Since different error types affect our algorithm to different extent, we

need to eliminate them in different stages. An error type having a far-reaching effect

will be eliminated earlier to reduce its potential disruption. Our error-tolerant COT

algorithm involves the following three stages:

(1) For each probe determine whether it is a NP. Separate (or discard) a NP and

eliminate remote FPs discovered along the way;

(2) For each clone determine whether it is chimerical. Separate (or discard) CCs and

eliminate remote FPs discovered along the way;

(3) Decide the column ordering under the influence of FPs and FNs. These are

described in Figure 22.
The Error-Tolerant COT Algorithm

Stage 1: For each probe determine whether it is a NP. Separate (or discard) a NP and eliminate remote

FPs discovered along the way using the NUP_RFP_SCREEING Algorithm in Section 4.1.

Stage 2: For each clone determine whether it is chimeric. Separate (or discard) CCs and eliminate

remote FPs discovered along the way using the CC_RFP_SCREEING algorithm in Section

4.2.

Stage 3: Decide the column ordering under the influence of FPs and FNs as follows. Process the rows

according to an ascending order of their sizes. The main iteration is described below.

1. If |CL(u)| ≤1, delete u. Proceed to the next row.

2. Construct LL(u) and RR(u) using the LL-RR-CLASSIFICATION algorithm.

3. Partition RW(CL(u)) into A(u), B(u), C(u), D(u) and I(u) using the

NEIGHOBR-CLASSIFICATION algorithm.

4. Let vA be a column in CL(A(u)) ∩ CL(u) with the largest |RW(vA) ∩ A(u)|. Let vB be a

column in CL(B(u)) ∩ CL(u) with the largest |RW(vB) ∩ B(u)|.

5. Remove FPs and FNs using the FP-FN-REMOVE algorithm.

6. Partition CL(u) using sub-rows in the three sets { CL(w) ∩ CL(u) | w ∈ A(u) }, { CL(w)

∩ CL(u) | w ∈ B(u) } and { CL(w) ∩ CL(u) | w ∈ D(u) } to obtain a unique partition.

7. Calculate the confidence level for each column of CL(u).

8. Delete all columns in CL(u) except vA and vB. Construct a new special row uS with

CL(uS)={vA,vB}. Proceed to the next row.

 30

Figure 22. The Error-Tolerant COT Algorithm

5. Computational Results

We conduct experiments on both synthetic data and real genomic data using our

error-tolerant COT algorithm.

5.1. Results on Synthetic Data

In the experiment on synthetic data, we start with matrices satisfying the COP and

randomly create errors. Then feed the resultant matrices to our algorithm to get a final

column ordering. The evaluation is based on the deviation of the new ordering

produced by the algorithm from the original one. We use three fixed matrices of sizes

100x100, 200x200, and 400x400 that satisfy the COP. These matrices are generated

randomly under the constraint that the number of 1s in each row ranges from 5 to 15.

The errors are created as follows.

1. The error rates for NPs and CCs are generated at three different levels, 0%, 1%

and 2%, respectively, to observe how the algorithm cope these errors at different

levels. To generate a NP, we merge two columns into one. To generate a CC, we

merge two rows into one. For example, for a 100x100 matrix, we shall generate 1

NP, 1 CC at the error rate 1%, and 2 NPs, 2 CCs at the error rate 2%. For a

400x400 matrix, we shall generate 4 NPs, 4 CCs at the error rate 1%, and 8 NPs, 8

CCs at the error rate 2%.

2. On top of the errors of NPs and CCs, we shall generate additional (combined)

errors of FPs and FNs at 3%, 5% and 10% rates, respectively. Within each error

percentage, the ratio of the number of FPs and that of FNs is set to be 1 to 4,

namely, for every FP generated, there will be 4 false negatives generated. For a

100x100 matrix, let the total number of 1s be k. At the error rate of 3%, we shall

generate 0.006k FPs by randomly changing 0.006k 0-entries (among all 0-entries)

to 1s. Similarly, we shall generate 0.024k FNs by randomly changing 0.024k

1-entries (among all 1-entries) to 0s. For a 400x400 matrix, let the total number of

1s be q. At the error rate of 10%, we shall generate 0.02q FPs by randomly

changing 0.02 q 0-entries to 1s. Similarly, we shall generate 0.08q FNs by

randomly changing 0.08q 1-entries to 0s.

 For each matrix at different sizes, we generate errors at different levels, namely

NPs and CCs at 0%, 1%, 2% and the total number of FPs and FNs at 3%, 5% and

 31

10%. For each error combination generated, we repeat the experiment 50 times based

on different random seeds. The results are evaluated by comparing the resultant

column ordering from that of the original ordering using the measures defined below.

Definition 5.1.1. For a column v, let d1 be the number of columns ordered to the left

of v but whose indices are greater than v and d2, the number of columns ordered to

the right of v whose indices are less than v. Let the displacement d(v) of column v be

the larger of d1 and d2.

 The displacement d(v) gives an approximate measure of the distance of column v

from its “correct” position. It should be noted that an exact measure is difficult to

define here since many other columns have to be moved simultaneously in order for

column v to be placed correctly. We have the following three criterion for measuring

the total deviation of the resultant ordering from the original one:

Definition 5.1.2. The average displacement of a column ordering is the average of

the displacement of all columns in the resultant order.

Definition 5.1.3. If the displacement of a column v is more than 4, we say v is a jump

column. The jump percentage is the number of jump columns divided by the total

number of columns.

Definition 5.1.4. The average difference of the column ordering is the average of the

difference in the column indices of adjacent columns in the resultant order.

 For example, in Figure 23, d(2) = 6 (there are 6 columns ordered to the left of

column 2 whose indices are greater than 2), d(6) = 1, and d(8) = 6 (there are 6

columns ordered to the right of column 8 whose indices are less than 8). Thus, column

2 and column 8 are jump columns. The average displacement is 1.7, and the average

difference is 3.2. Note that for a perfect ordering, the average difference is 1.

1 78 3 4 5 6 2 9 10

Jump column

Jump column

Figure 23. An example of jump columns.

We shall measure the performance of our algorithm by counting (1) the number

of jump columns; (2) the number of average displacement and (3) the number of

average difference in the resultant order. The philosophy of using the number of jump

 32

columns as a measure is that, it is the larger column displacement we want to avoid

rather the smaller one. In case there is a big block of columns misplaced, then every

column in that block could be a jump column. So there is a big penalty for block

misplacement (sometimes, such a penalty is doubled). This assumption seems to be

acceptable for those biologists we have consulted.

The total displacement is greater than or equal to the total number of column

swaps required to place the columns in increasing order. This can argued as follows.

For the column vn with the largest index, we can move it to the rightmost position

without using more than d(vn) swaps. Then the column vn-1 with the second largest

index can be moved to the left of column v* without using more than d(vn-1) swaps.

The rest can be argued recursively. Thus, the average displacement reflects the

average behavior of displacement of all columns.

Now, the third measure, the average difference, does not penalize the block

displacement as much as in the previous two measures. But, it penalizes columns

deleted by our algorithm.

In Figures 24, 25 and 26, we plot the curve of the accumulative number of

matrices among the 50 (the y-axis) matrices against the jump percentage (the x-axis)

at different FP and FN error rates, 3%, 5% and 10%, respectively. Furthermore, we

assume the largest error rate, 2%, for NP and CCs in all three cases. In case the final

probe ordering are broken into several islands (because of column deletion), the jump

percentages are calculated for each island separately. As one can see, even when the

FP and FN error rate is 10%, the percentage of jump columns in most cases is still less

than 5%. This indicates that the final probe ordering produced by the algorithm is a

good approximation for the original. In a few bad instances where the jump

percentages are over 15%, the errors are often caused by the incorrect order of two

large blocks within an island. More detailed statistics for the jump percentage are

listed in Table 1 to Table 3. Table 4 and Table 5 list the average number of

displacement and the average difference separately. In most cases, the average

number of displacement is less than 0.5, and the average number of difference is less

than 1.6 (again, for a perfect ordering, the average difference is 1). Table 6 and Table

7 list the average number of islands and the percentage of deleted columns separately.

Even when the error rate of FPs and FNs is 10%, the average number of islands is still

about 6, and in most cases, the percentage of deleted columns is less than 10%.

 33

0

5

10

15

20

25

30

35

40

45

50

0% 5% 10% 15% 20% 25%

3%

5%

10%

Figure 24. The result of 5-jump percentages running fifty 100x100 matrices with
2% NPs and CCs.

0

5

10

15

20

25

30

35

40

45

50

0% 5% 10% 15% 20% 25%

3%

5%

10%

Figure 25. The result of 5-jump percentages running fifty 200x200 matrices with
2% NPs and CCs

 34

0

5

10

15

20

25

30

35

40

45

50

0% 5% 10% 15% 20% 25%

3%

5%

10%

Figure 26. The result of 5-jump percentages running fifty 400x400 matrices with
2% NP and CCs

Table 1. Accumulative percentage of matrices whose columns are within the

jump percentage (without CC and NP).
100x100 matrix 200x200 matrix 400x400 matrix Jump

percentage 3% 5% 10% 3% 5% 10% 3% 5% 10%
0 58% 54% 18% 62% 30% 10% 78% 42% 14%
5 100% 96% 88% 96% 88% 92% 100% 100% 90%

10 ″ 98% 94% 98% 98% 98% ″ ″ 100%
15 ″ 98% 98% 98% 100% 100% ″ ″ ″
20 ″ 100% 100% 100% ″ ″ ″ ″ ″

Table 2. Accumulative percentage of matrices whose columns are within the

jump percentage (with 1% NPs and CCs).
100x100 matrix 200x200 matrix 400x400 matrix Jump

percentage 3% 5% 10% 3% 5% 10% 3% 5% 10%
0 56% 46% 30% 38% 30% 22% 68% 60% 18%
5 94% 100% 92% 94% 88% 86% 100% 100% 98%

10 98% ″ 92% 100% 100% 94% ″ ″ 100%
15 100% ″ 96% ″ ″ 98% ″ ″ ″
20 ″ ″ 100% ″ ″ 100% ″ ″ ″

 35

Table 3. Accumulative percentage of matrices whose columns are within the
jump percentage (with 2% NPs and CCs).

100x100 matrix 200x200 matrix 400x400 matrix Jump

percentage 3% 5% 10% 3% 5% 10% 3% 5% 10%
0 70% 50% 20% 38% 38% 26% 70% 60% 20%
5 98% 92% 90% 92% 92% 96% 100% 100% 98%

10 100% 100% 96% 100% 96% 100% ″ ″ 98%
15 ″ ″ 96% ″ 98% ″ ″ ″ 98%
20 ″ ″ 100% ″ 98% ″ ″ ″ 100%
25 ″ ″ ″ 100% ″ ″ ″ ″

Table 4. Average number of displacement.

Error rate of CC and NUP 0% 1% 2%
Error rate of FP and FN 3% 5% 10% 3% 5% 10% 3% 5% 10%

100x100 matrix 0.02 0.08 0.30 0.03 0.19 0.28 0.02 0.06 0.37
200x200 matrix 0.04 0.12 0.24 0.05 0.06 0.16 0.05 0.44 0.77
400x400 matrix 0.06 0.16 0.56 0.09 0.23 0.39 0.92 0.82 1.01

Table 5. Average difference of indices of adjacent columns.

Error rate of CC and NUP 0% 1% 2%

Error rate of FP and FN 3% 5% 10% 3% 5% 10% 3% 5% 10%
100x100 matrix 1.34 1.52 1.91 1.37 1.57 1.90 1.39 1.60 1.97
200x200 matrix 1.44 1.61 2.09 1.51 1.64 2.22 1.56 1.68 2.07
400x400 matrix 1.36 1.54 1.94 1.38 1.56 1.97 1.46 1.56 1.99

Table 6. Average number of islands.
Error rate of CC and NUP 0% 1% 2%
Error rate of FP and FN 3% 5% 10% 3% 5% 10% 3% 5% 10%

100x100 matrix 1.04 1.16 1.64 1.1 1.26 1.88 1.12 1.28 2.06
200x200 matrix 1.68 2.1 3.72 1.76 2.26 4.16 2.14 2.26 3.62
400x400 matrix 1.7 2.62 6.22 1.74 3.4 6.06 1.9 3.04 6.22

Table 7. Percentage of deleted columns.
Error rate of CC and NUP 0% 1% 2%
Error rate of FP and FN 3% 5% 10% 3% 5% 10% 3% 5% 10%

100x100 matrix 2.76 4.24 8.88 2.8 4.36 10.5 2.54 4.29 10.7
200x200 matrix 3.37 5.68 12 3.58 5.39 12.7 3.88 6.58 13
400x400 matrix 3.47 5.97 13.5 3.49 6.21 14.3 3.63 6.09 16.7

 36

 Next, we give two outputs from our COT program in Figures 27 and 28. These

matrices do not contain NPs or CCs. In Figure 27, we give the result of a 50x50

matrix at error rate 5%. The matrix on the left is generated from the original matrix

whose positions of “1” and “0” are represented by “1” and dot, respectively. The FNs

and FPs generated from the original matrix are represented by “N”s and “P”s,

respectively. The matrix on the right is the resultant matrix generated by our program

in which “F” represents the fill-in elements. The number at the top of each column of

the resultant matrix is the confidence level of this column.

 In this example, we get the ordering of columns of the resultant matrix from left to

right as follows:

1 2 3 4 6 7 8 10 9 5 11 12 13 14 15 16 17 18 19 20 21 23 24 25 26 27 28 30 29 31 32

33 34 35 36 37 39 40 41 42 43 44 45 46 47 49 50.

 In the above column ordering, column 5 is a 5-jump. Columns 22, 38, 48 are

deleted. The number of average displacement is 0.19 and the number of average

difference is 1.3.

In Figure 28, we give the result of a of a 50x50 matrix at the higher error rate, 10%.

In this example, the resultant column ordering from left to right is as follows:

1 5 17 2 3 4 6 7 8 9 12 16 14 15 13 18 10 19 21 22 23 24 25 26 27 28 30 29 31 32 33

34 35 36 37 38 39 40 41 42 43 44 45 46 48 47 49.

In the above column ordering, columns 17 and 10 are jump columns. Columns 11, 20,

50 are deleted. The number of average displacement is 0.9 and the number of average

difference is 2.23.

 37

11111N1111111111N11...............................
.11111111111......................................
...1111111111.....P...............................
...11111111111N1111111............................
...1111111111111111111...............P............
.....1111111111...................................
.....111111111111111111...........................
.......N11111111111...............................
.......1111111111.................................
........111111111111N111..........................
........1N1111111111111111........................
..........111111111111111111...................P..
....P.....111111..................................
...........11111111111111.........................
...........1N111111111111N1N......................
...........1111111111111111111....................
............1111N11111111111N1....................
............111111111111111.......................
.................1111111111111N11.................
..................1111N11111111111................
..................11111111........................
..................1111111111111...................
...................111111.........................
....................1111111N111111................
......................11111111....................
........................1111N1....................
..........................P11N11111111............
...........................11111111111111.........
.............................11111111111111111....
..............................11111111111111......
.....................P.........11111111...........
................................111111111111111111
.................................1111111111111....
.................................11111111111111111
.................................1111111111.......
..................................1111111111111111
..................................111111..........
...................................111111111111111
....................................11111111111111
....................................1111111.......
.....................................111111111N111
.....................................1111111111111
......................................11N111111111
.......................................111111.....
.......................................11111111111
.......................................N111111111N
...11111N111
..N1111111
..111111..

44442444414444344443334424444444424344444444244
 1111F11111111111F11F...........................
 .11111111111...................................
 ...1111111111..................................
 ...11111111111F111111..........................
 ...111111111111111111..........................
11111F11111................................
11111F111111111111.........................
11F11111111.............................
111F1111111..............................
11F1111111111F11........................
1F111111111111111......................
11111111111111111....................
1111111...............................
1111111111111.......................
11111111111F1.....................
111111111111111111..................
1111F11111111111...................
11111111111111.....................
111111111111..................
111F11111111111..............
1111111......................
11111111111..................
11111.......................
1111FFF111111..............
11111111..................
11111...................
11111111...........
1111111111111........
1FF11111111111111...
111111111111.....
1111111..........
1111111111111111
111111111111...
111111111111111
111111111......
11111111111111
11111.........
1111111111111
111111111111
111111......
11111111F11
11111111111
11F11111111
111111....
1111111111
11111111.
11111F11
 ...111111
 ..11111..

Figure 27. A 50x50 matrix with FP and FN error rate at 5%

 38

1111111111111111111...............................
.111N1111N11......................................
...1111111111.....................................
...1N11111111N11111111............................
...11N11111111111N1111............................
.....111111111N...................................
.....111111111111111111...P.......................
....P..1111111N1N11...............................
.......1111111111.................................
........1111111111111111..........................
........1111111111111N1111........................
..........11111111111N111111......................
..........11N111..................................
...........1111111111111N..P.......................
...........1111N111111111111......................
...........1111111N11111111111....................
............111111111111111111....................
............111111111N11111.......................
.................111111111111111N.................
.................P11111N11N1111111................
..................111N1111........................
..................1111111111111..................P
...................111111.........................
................P...1111NN11111111................
......................1N11N111....................
........................1111N1........P...........
......................P....111NN111111............
...........................111N1111111111.........
.............................11111111111111111....
..............................11111111N11111......
...............................11111111...........
................................11111111111N1111N1
................................P1111111111111....
.................................1111111N111111111
.................................1111111111.......
..................................11N111111111111N
..................................111111..........
...................................N11111111N11111
....................................11111111111N11
...................P................1111111.......
.....................................1111111111N11
.....................................1N1N111111111
......................................111111111111
.......................................111111.....
..........P............................1111111N111
.......................................1111N111111
...111111N1N
..11111111
..1111N1..

44144444444333441331423214444424243314344224144
 111111111111111111F............................
 ...11111111....................................
111111....................................
111111F1111111...........................
11111111FF111...........................
11111F1..................................
111111111111111..........................
11111F1111.............................
1111111................................
1111111111111.........................
1111111111F1111.......................
111111F11F111111.....................
1111.................................
111111F11111.........................
............1111F111111111.....................
111111FF111111111....................
11111F11111111111...................
11111F11F11111......................
1F111111111111..................
1111F11F1111111...............
11F1111.......................
111111111111..................
11111........................
1111FF11111111F..............
1F1FFF11...................
11111....................
11FFF111111...........
111F1111111111........
1F1111111111111111...
1111111F11111.....
11111111..........
11111111111F1111.
11111111111111...
1111111F11111111
1111111111......
11F111111111111
111111.........
11111111F1111
1111111111F11
1111111......
111111111F11
1F1F11111111
11111111111
111111....
11111111F1
1111F11111
11111F11
 ..1111111
 ..11111..

Figure 28. A 50x50 matrix with FP and FN error rate at 10

 39

5.2. Results on Real Genomic Data

Another experiment we performed [Lu et al. 2001] using both STS and EST

markers on HTG sequences has the following result. We did one experiment on

chromosome 22 whose sequence is known. Clones were randomly generated, and the

STS and EST markers were selected form STS database and UniGene database. The

match of STS markers and the BAC clones are decided using a computational

procedure known as "electronic PCR" (e-PCR) [GDS1997]. The match of EST

markers and the BAC clones are decided using BLAST as follows. For an EST

marker, if (i) the identity percentage of the highest scored local alignment of the EST

and the genomic sequence is greater than 70% (80%, 90%, respectively) and (ii) the

length of the above local alignment is greater half of the length of the EST sequence,

then we say the EST marker matches the genomic sequence under 70% (80%, 90%,

respectively) quality. Moreover, the relation of two non-overlapping clones can be

determined if they share ESTs that belong to the same UniGene cluster. The

experimental results are listed in Table 6. We compare the clone ordering of our

program with the real ordering of the clones in chromosome 22 and count the number

of contigs. The clone ordering is compared based on the positions of their left

endpoints with respect to its real ordering in chromosome 22. Similar to the definition

of column deviation, we can define the displacement d(v) of the left endpoint, say v,

of a clone in the resultant ordering. If d(v) is greater than 4, we say this clone is jump

clone. Usually, low quality matches might increase the density of markers and reduce

the number of contigs, though they likely contain more errors than high quality

matches. Preliminary experiment shows that our algorithm can correctly reduce an

STS map from 28 islands down to 18 islands using 70% EST matches, and there are

only six jump clones using 70% EST matches.

Table 6. The experimental results of chromosome 22.

EST quality STS only 90% 80% 70%

Number of jump clones 0 4 4 6

Number of islands 28 24 24 18

In another experiment with chromosome 4 (whose sequence is unknown) we

obtained the following island-reduction effect with STS and different quality of EST

markers:

Table 7. The island-reduction effect of various low quality ESTs

 40

EST quality 90% 80% 70%

of islands 61 60 35

 In our experiment, markers are ordered first and the clone ordering is determined

by cluster of markers in order to construct the golden path, which is simply the way

we assembled all the cosmid/bac/pac clones.

 For a 400 by 400 matrix, the computation time is close to 3 minutes. Our

experience indicates that, the number of FPs should be carefully controlled (in

experiment) since they can severely tangle with NPs, CCs and disrupt the final

ordering.

Acknowledgement

We would like to thank Professor Ueng-Cheng Yang of National Yang-Ming

University for providing the EST data for our experiment. We would also like to thank

the National Science Council for their generous support under Grant NSC

89-2213-E-001.

References

Alizadeh F., Karp, R.M., Newberg, L.A., and Weisser D.K. 1995. Physical mapping
of chromosome: A combinatorial problem in molecular biology. Algorithmica 13(1/2),
52-76.

Alizadeh, F., Karp, R. M., Weisser, D. K., and G. Zweig. 1994. Physical mapping of
chromosomes using unique probes. Proc. 5th SODA, 489-500.

Booth, K. and Lucker, G. 1976. Testing for the consecutive ones property, interval
graphs, and graph planarity using PQ-tree algorithms. J. of Computer and system
science 13, 335-379.

Christof, T., Jünger, M., kececioglu, J., Mutzel, P., Reinelt, G. 1997. A branch-and-cut
approach to physical mapping with end-probes. Proc. 1st Annual International
Conference on Computational Molecular Biology, 84-92.

Daues, W., J., Hanks, L., and Capra, R. 1995. Fragment collapsing and splitting while
assembling high-resolution restriction maps. J. Computational Biology 2(2),185-205.

Eichler, E. E. 2002. Recent duplication, evolution and assembly of the Human
Genome. Proc. 6th Annual International Conference on Computational Molecular
Biology, 155.

Fulkerson, D.R. and Gross, O.A. 1965. Incidence matrices and interval graphs, Pacific
Journal of Mathematics, 15 (3), 835-855.

Golumbic, M.C., Kaplan, H., and Shamir, R. 1994. On the complexity of DNA
physical mapping. Adv. in Applied Math 15, 251-261.

 41

Golumbic, M.C. and Shamir, R. 1993. Complexity and algorithms for reasoning about
time: a graph-theoretical approach. JACM 40, 1108-1133.

Greenberg, D.S. and Istrail, S. 1995. Physical mapping by STS hybridization:
Algorithmic strategies and the challenge of software evaluation. J. Computational
Biology 2(2),185-205.

Hsu, W. L. 2002. A simple test for the consecutive ones property, Journal of
Algorithms 42, 1-16, 2002.

Jain, M., Myers, E.W. 1997. Algorithms for Computing and integrating physical maps
using unique probes. Proc. 1st Annual International Conference on Computational
Molecular Biology, 151-161.

Karp, R.M.1993. Mapping the genome: some combinatorial problems arising in
molecular biology. Proc. STOC 93, 278-285.

Lu, W. F., Hsu, W.L., Liu, N. and Yang, U.C. 2001. An Error-Tolerant Map
Construction Algorithm Using EST Markers. DNA Sequence Assembly Conference,
USC.

Mizukami, T., Chang, W.I., Garkavtsev, I., Kaplan, N., Lombardi, D., Matsumoto, T.,
Niwa, O., Kounosu, A., Yanagida, M., Marr, T.G. and Beach, D. 1993. A 13kb
resolution cosmid map of the 14 Mb Fission Yeast Genome by nonrandom
sequence-tagged site mapping. cell 73, 121-132.

Mott, R., Grigoriev, A., and Lehrach. H. 1994. An algorithm to detect chimeric clones
and random noise in genomic mapping. Genetics 22,482-486.

Mayraz, G. and Shamir, R. 1999. Construction of physical maps from ologonucleotide
fingerprints data. Journal of computational biology 6(2), 237-252.

Natanzon, A., Shamir, R. and Sharan, R. 1998. A polynomial approximation
algorithm for the minimum fill-in problem. The thirtieth annual ACM Symposium on
Theory of Computing, 41-47.

Palazzolo, M.J., Sawyer, S.A., Martin, C.H., Smoller, D.A. and Hartl, D.L. Optimized
strategies for sequnce-tsagged-site selection in genome mapping. 1991. Proc. Natl.
Acad. Sci. 88, 1991.

Yannakakis, M. 1981. Computing the minimum fill-in is NP-complete. SIAM J. Alg.
Disc. Math 2, 77-79.

