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Abstract 

As new high-throughput technologies have created an explosion of biomedical literature, there arises a pressing need for 
automatic information extraction from the literature bank. To this end, biomedical named entity recognition (NER) from 
natural language text is indispensable. Current NER approaches include: dictionary based, rule based, or machine learning 
based. Since there is no consolidated nomenclature for most biomedical NEs, any NER system relying on limited dictionaries 
or rules does not seem to perform satisfactorily. In this paper, we consider a machine learning model, CRF, for the 
construction of our NER framework. CRF is a well-known model for solving other sequence tagging problems. In our 
framework, we do our best to utilize available resources including dictionaries, web corpora, and lexical analyzers, and 
represent them as linguistic features in the CRF model. In the experiment on the JNLPBA 2004 data, with minimal post-
processing, our system achieves an F-score of 70.2%, which is better than most state-of-the-art systems. On the GENIA 3.02 
corpus, our system achieves an F-score of 78.4% for protein names, which is 2.8% higher than the next-best system. In 
addition, we also examine the usefulness of each feature in our CRF model. Our experience could be valuable to other 
researchers working on machine learning based NER. 

 

Keywords: Biomedical named entity recognition, Conditional random fields, Literature mining, Linguistic features 

 

 
Expert Systems 

with Applications



 Elsevier Science 2 

1. Introduction 

Biomedical literature available on the web has 
experienced unprecedented growth in recent years 
(Figure 1). Therefore, demand for efficiently 
processing these documents is increasing rapidly. 
Biomedical named entity recognition is a critical task 
for automatically mining knowledge from biomedical 
literature. Since the 1990s, advances in 
computational and biological methods in various 
areas such as genome sequence analysis (Venter, 
2001), gene identification within sequenced DNA 
(Korf, Flicek, Duan, & Brent, 2001), and property 
analysis tools for genes and proteins (Jaakkolay, 
Diekhansz, & Hausslerz, 2000) have remarkably 
changed the scale of biomedical research. These 
large-scale experimental methods produce large 
quantities of data. When processed, the data can 
provide actual information about gene expression 
patterns. Almost every known piece of information 
pertaining to genes, proteins, and their roles in 
biological processes is reported somewhere in 
published biomedical literature. Moreover, the 
advancement of genome sequencing techniques has 
created an overwhelming amount of literature on new 
gene discovery. The abundance of genes and 
literature produces a major bottleneck for interpreting 
and planning genome-wide experiments. Thus, the 
ability to rapidly survey this literature constitutes a 
necessary step toward both the design and the 
interpretation of any large-scale experiment. 
Moreover, automated literature mining offers a yet 
unexploited opportunity to integrate many fragments 
of information gathered by researchers from multiple 
fields of expertise into a complete picture exposing 
the interrelated roles of various genes, proteins, and 
chemical reactions in cells and organisms. 

During the last few years, there has been a surge 
of interest in mining biomedical literature, (Andrade 
& Valencia, 1997; Leek, 1997; Fukuda, Tsunoda, 
Tamura, & Takagi, 1998; Shatkay, Edwards, Wilbur, 
& Boguski, 2000; Jenssen, Laegreid, Komorowski, & 
Hovig, 2001; Hanisch, Fluck, Mevissen, & Zimmer, 
2003), ranging from relatively modest tasks such as 
finding reported gene location on chromosomes 
(Leek, 1997) to more ambitious attempts to construct 
putative gene networks based on gene-name co-
occurrences within articles (Jenssen, Laegreid, 

Komorowski, & Hovig, 2001). Since the literature 
covers all aspects of biology, chemistry, and 
medicine, there is almost no limit to the types of 
information that may be recovered through skillful 
and pervasive mining. Some possible applications for 
such efforts include the reconstruction and prediction 
of pathways, establishing connections between genes 
and disease, finding the relationships between genes 
and specific biological functions, and much more. 

Fig.  1. Growth in Medline over the past 17 years. The hollow 
portion of the bar is cumulative size up to the preceding year; the 
solid portion is new additions in that year. (Cohen & Hunter, 2005) 

 
Critical tasks for biomedical literature mining 

include named entity recognition, tokenization, 
relation extraction, indexing and 
categorization/clustering (Cohen & Hunter, 2005). 
With these technologies, we can construct an 
environment that aids biologists in the analysis of the 
output of high-throughput assays and helps the 
researcher exploit the flood of publications that fills 
Medline at the rate of 1500 abstracts a day (Cohen & 
Hunter, 2005). Among these technologies, named 
entity recognition (NER) is most fundamental. It is 
defined as recognizing objects of a particular class in 
plain text. Depending on required application, NER 
can extract objects ranging from protein/gene names 
to disease/virus names. 

In general, biomedical named entities (NEs) do 
not follow any nomenclature (Shatkay & Feldman, 
2003) and can comprise long compound words and 
short abbreviations (Pakhomov, 2002). Some NEs 
contain various symbols and other spelling variations 
(Hanisch, Fluck, Mevissen, & Zimmer, 2003). On 
average, any NE of interest has five synonyms. 
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Biomedical NER is a challenging problem. There are 
many different aspects to deal with. For example, one 
can have unknown acronyms, abbreviations, or words 
containing hyphens, digits, letters, and Greek letters; 
Adjectives preceding an NE may or may not be part 
of that NE depending on the context and applications; 
NEs with the same orthographical features may fall 
into different categories; An NE may also belong to 
multiple categories intrinsically; An NE of one 
category may contain an NE of another category 
inside it.  

To circumvent these difficulties, we need to 
introduce various language resources. In the 
biomedical domain, there are more and more curated 
resources, including lexical resources such as 
LocusLink (Maglott, 2002) and ontologies such as 
GO (Ashburner, Ball, & Blake, 2000) and MeSH 
(NLM, 2003). To exploit these resources, we need a 
framework. There are three main approaches to NER: 
dictionary-based, rule-based, and machine learning 
based. One might think that systems relying solely on 
dictionary-based recognition could achieve 
satisfactory performance. However, according to 
(Cohen & Hunter, 2005), they typically perform quite 
poorly, with average recall rates in the range of only 
10-30%. Rule-based approaches, on the other hand, 
are more accurate, but less portable across domains 
(M`arquez, Padr'o, & Rodr'iguez, 2000). Therefore, 
we chose the machine learning based approach. There 
are several primary machine learning based methods, 
which will be summarized in more detail in Section 2.  

In this paper, we describe how to construct a 
framework that can exploit as much useful language 
information as possible in the recognition of 
biomedical named entities. We used a well-known 
machine learning method, conditional random fields 
(CRF), as the basis of this framework. Our 
contribution is to integrate most of the linguistic 
features mentioned in other systems into this CRF 
framework, and our system achieves the best 
performance among all Markov model based systems, 
especially in protein name recognition. Hopefully, 
our experience of integrating various linguistic 
features may prove useful for those interested in 
constructing machine learning based NER system. 

2. Related Work 

Named Entity Recognition (NER) involves the 
identification of proper names in text and their 
classification into different types of named entities. 
The problem was first defined in the general-
language domain in the context of the Message 
Understanding Conferences (Chinchor, 1998). It is 
also as subject of much interest for researchers in the 
biomedical domain. Of course, there are differences 
between general NER and Biomedical NER. In 
general-language domains, the set of entities tends to 
be fairly heterogeneous, ranging from names of 
individuals to monetary amounts, whereas in the 
biomedical domain, the set of entities is often 
restricted to just biomedical proper names such as 
protein, DNA, RNA, etc. Moreover, there are many 
well-curated resources in the biomedical domain, 
which computer linguists can exploit. 

Biomedical NER falls into three general classes: 
dictionary-based approaches (see above), rule-based 
approaches, and machine learning based approaches. 
Rule-based approaches generally rely on 
combinations of regular expressions (templates) to 
define patterns that match biomedical NEs and rules 
for extending NE boundaries right and/or left. For 
example, a rule-based approach might use a regular 
expression such as /^[a-z]+[0-9]+$/ (any sequence of 
one or more lower-case letters followed immediately 
by any sequence of one or more digits) to recognize 
that p53 is a gene name. One can also create a rule 
that uses categorical nouns to classify biomedical 
named entities. For example, compound words 
ending in “mRNA” have a high probability of being 
RNA. While rules of this type can be quite effective, 
they suffer from the weakness of being domain-
specific. Thus, if the system is ported to a new 
domain, many rules will probably need to be 
modified. Fukuda's PROPER system is a 
representative rule-based system that is freely 
available for download at (Fukuda, 1998). In addition 
to (Fukuda, Tsunoda, Tamura, & Takagi, 1998), 
examples of rule-based approaches in the literature 
include (Narayanaswamy, Ravikumar, & Vijay-
Shanker, 2003).  

Machine-learning-based approaches are divided 
into two main categories: classifier-based and 
Markov model based. Classifier-based models 
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include decision trees, naïve Bayes, and Support 
Vector Machines (SVM1) (Kazama, Makino, Ohta, & 
J. Tsujii, 2002). Markov model based models include 
hidden Markov models (HMM) (Zhao, 2004), 
Maximum Entropy Markov Models (MEMM 2 ) 
(Finkel, Dingare, Nguyen, Nissim, Manning, & 
Sinclair, 2004), and CRF (Settles, 2004). Markov 
model based systems, in particular, excel at solving 
sequence tagging problems such as speech 
recognition (Rabiner, 1989) and part-of-speech (POS) 
tagging (Ratnaparkhi, 1996; Lee, Tsujii, & Rim, 
2000). 

Of the Markov models, we chose CRF as our 
framework. Its primary advantage over HMM is its 
conditional nature, which allows for the relaxation of 
independent assumptions that HMM requires to 
ensure tractable inference. Additionally, CRFs avoid 
the label bias problem (Lafferty, McCallum, & 
Pereira, 2001) exhibited by MEMMs (McCallum, 
Freitag, & Pereira., 2000) and other conditional 
Markov models based on directed graphical models 
(Wallach, 2004). CRFs outperform both MEMMs 
and HMMs on a number of real-world sequence 
labeling tasks (Lafferty, McCallum, & Pereira, 2001; 
Pinto, McCallum, Wei, & Croft, 2003; Sha & Pereira, 
2003). In addition, they are flexible enough to 
capture many correlated features, including 
overlapping and non-independent features. We can 
thus use multiple features with more ease than on an 
HMM system. Conditional random fields also avoid a 
fundamental limitation of methods based on 
combining per-position classifiers. 

The major problem faced by machine learning 
NER systems is the availability of large and 
consistent annotated corpora. Before 2003, almost all 
researchers used ad hoc small-scale annotated 
corpora. In 2003, BioCreative (Valencia & Blaschke, 
2004) provided a corpus in which protein and gene 

——— 
1  

Burges, C. J. C. (1998). A Tutorial on Support Vector Machines 
for Pattern Recognition. Data Mining and Knowledge Discovery 
2(2): 121-167. contains a comprehensive tutorial of SVM 

2 A good introduction to MEMM can be found in the paper by  
McCallum, A.,Freitag, D., & Pereira, F. (2000). Maximum 
entropy Markov models for information extraction and 
segmentation. Proceedings of the 17th International Conf. on 
Machine Learning. 

names were annotated. It includes 7500 training 
sentences, 2500 developing sentences, and 5000 test 
sentences. They also provided some 
standardization/tagging guidelines for this task. 
Shortly after, the Tsujii Lab released the GENIA 
corpus (Kim, Ohta, Teteisi, & Tsujii, 2003) which 
annotated 2000 Medline abstracts containing 36 
categories of biomedical NEs as defined in the 
GENIA ontology. At present, many machine learning 
based NER systems use these two annotated corpora 
to evaluate their performance. In 2004, the JNLPBA 
2004 task (Kim, Ohta, Tsuruoka, Tateisi, & Collier, 
2004) provided an extra 404 abstracts that were 
selected by querying Medline. More biomedical NER 
systems were released for this task, the best one 
achieves an F-score around 70%. These results for 
this task tended to be more objective since the 
training set and test set did not come from the same 
query of Medline. The task of annotating biomedical 
literature is labor-intensive and relies upon hundreds 
of biomedical experts around the world. Manual 
curation creates a bottleneck in the amount of 
information that can be annotated and also causes the 
problem of inconsistency in the annotation. 
Following the JNLPBA 2004 task, the new trend is to 
use various resources, such as web corpora, and more 
dictionaries, such as LocusLink (Maglott, 2002) and 
SwissProt (Boeckmann, Bairoch, Apweiler, Blatter, 
Estreicher, Gasteiger, Martin, Michoud, O'Donovan, 
Phan, Pilbout, & Schneider, 2003). To test the 
effectiveness of each resource, we will use the same 
feature set, represent it in our system and compare it 
in our experiment. 
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Fig.  2. Data processing flow 
 

 
Fig.  3. Web interface of our NER system 
 

 
Fig.  4. Output page of our NER system 

3. Data Processing Flow 

Our system provides a web query interface, as 
shown in Figure 3. Users can enter up to 10 input 
sentences in the textbox. After receiving the input 
sentences, our system will use GPML format (Tateisi, 
2001) to annotate the input sentence. If you use 
Mozilla browser, you will see named entities in the 
input text highlighted in various colors (Fig. 4). 
Therefore, with our system, users can easily locate all 
biomedical named entities of interest. In addition, our 
system enhances the readability of biomedical text. 

After receiving text from the web interface, the 
Sentence Spliter module will first parse it into 
sentences. Then it passes the sentences one by one to 
the Feature Generator. Figure 2 shows the data 
processing flow for each input sentence. The Feature 
Generator will pass an input sentence to all installed 
Feature Sensors, which will extract information from 
the sentence. Some sensors reference outside sources. 

For example, Dictionary Feature Sensors uses 
external dictionaries and POS Feature Sensors invoke 
a memory-based POS tagger. Detailed operation of 
each Feature Sensor will be described in Section 6. 
Finally, each Feature Sensor will output some 
information, which is then combined by the Feature 
Generator. The Feature Generator then passes its 
output to the CRF tagger. 

The CRF tagger uses the algorithm described in 
Section 4 to assign a tag to all tokens in the input 
sentence. The tagged sentence then passes through 
two post-processing modules, the Nested NE 
Resolution module (NR) and the Reclassfication 
module (RC), which are described in Section 6. This 
produces our final output. 

4. The CRF-based NE Recognizer 

In this section, we have integrated two 
descriptions of CRF-based tagging framework (Sha 
& Pereira, 2003) (Wallach, 2004) into a coherent 
version. We use an open source CRF package 
(Sarawagi & Imran, 2004) which is originally 
developed on Java. For efficiency, we port it to 
the .NET framework. We create a J#.NET project and 
import individual Java source files into that project. 
Most Java APIs are supported in J#, but a few are not, 
in which case we rewrite those parts. According to 
our experience, both the execution time and memory 
expense are much reduced. Further details on the 
performance comparison of .NET and Java can be 
seen in http://www.gotdotnet.com/team/compare/. 

4.1. Formulation 

In the NER problem, we regard each word in a 
sentence as a token. Each token is associated with a 
tag that indicates the category of the NE and the 
location of the token within the NE, for example, B_c, 
I_c where c is a category. These two tags denote 
respectively the beginning token and the following 
token of an NE in category c. In addition, we use the 
tag O to indicate that a token is not part of an NE. 
The NER problem can then be phrased as the 
problem of assigning one of 2n + 1 tags to each token, 
where n is the number of NE categories. In the 
JNLPBA 2004 task, there are 5 named entity 
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categories and 11 tags. For example, one way to tag 
the phrase IL-2 gene expression , CD28 , and NF-
kappa B in a paper is “B-DNA, I-DNA, O, O, B-
protein, O, O, B-protein, I-protein”. 

4.2. Conditional Random Fields 

Conditional random fields (Lafferty, McCallum, & 
Pereira, 2001) (CRF) are probabilistic frameworks 
for labeling and segmenting sequential data. They are 
probabilistic tagging models that provide the 
conditional probability of a possible tag sequence y = 

nyyy ,...,, 21  given the input token sequence x = 1x , 

nxx ,...,2 . We use two random variables X and Y to 
denote any input token sequences and tag sequences, 
respectively. 

A CRF on (X, Y) is specified by a vector f of local 
features and a corresponding weight vector λ. There 
are two kinds of local features: the state feature s( iy , 
x, i) and the transition feature t( 1−iy , iy , x, i), where 

1−iy and iy  are tags at positions i-1 and i in the tag 
sequence, respectively; i is the input position.  

Each dimension of a feature vector is a distinct 
function. When defining feature functions, we 
construct a set of real-valued features ),( ib j x  of the 
observation to express some characteristic of the 
empirical distribution of the training data that should 
also hold true of the model distribution. 
An example of such a feature is: 

⎩
⎨
⎧

=
otherwise.    0

 kinase"" is position at  token  theif    1
),(

i
ib j x  

Each feature function jf (the jth dimension of f) 
takes on the value of one of these real-valued 
observation features ),( ib j x  if the current state (in 
the case of a state function) or previous and current 
states (in the case of a transition function) take on 
particular values. All feature functions are therefore 
real-valued. For example, consider the following 
transition function: 

⎪
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To make the notation more uniform, we also write: 
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for any state feature vector s and transition feature 
vector t. Typically, features depend on the inputs 
around the given position, although they may depend 
on global properties of the input. They may also be 
non-zero only at some positions, for example, the 
features that pick out the first or last tags. 
    The CRF’s global feature vector for some input 
sequence x and its corresponding tag sequence y is 
given by the equation: 

∑=
i

xyfxyF ),,(),( i )                        (1) 

where i ranges from the first to the last input position. 
The conditional probability distribution defined by 
the CRF is then 

)(
),(exp),(

XZ
XYλFXY

λ
λ =p                      (2) 

where 
∑=

y

xyλFxZ ),(exp)(λ  

Any positive conditional distribution p(Y |X) that 
obeys the Markov property 

),,|(),}{|( 11 XX +−≠ = iiiijii YYYpYYp  
can be written in the form (2) for appropriate choice 
of feature functions and weight vector (Hammersley 
& Clifford, 1971). 
    The most probable sequence for input sequence x 
is 

),(expmaxarg)(maxargˆ xyλFx|yy
yy

p == λ  

because )(xZ λ  does not depend on y. According to 
(1), ),( xyF  can be decomposed into a sum of local 
feature vectors, ),( ix,yf . In addition, when 1>i ,  

),( ix,yf  can be rewritten to ),( 1 iyy ii x,,f − , which 
is a function of the tags at th1−i  and thi  position. 
Therefore, we can find the most likely y with the 
Viterbi search algorithm. The detailed calculation can 
be carried out by matrix computation as mentioned 
by (Wallach, 2004). 
    Given a training set N

k
kkT 1

)()( )},{( == yx , we train a 
CRF by maximizing the log-likelihood of T, which 
we assume as fixed for the rest of this section: 
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This function is concave, guaranteeing convergence 
to global maximum. To perform this optimization, we 
seek the zero of the gradient. 

)],(),([ )(
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λ −=∇ ∑L       (3) 

The maximum log-likelihood of T is reached when 
the empirical average of the global feature vector 
equals its model expectation. This expectation 

),( )(
)|( )(

k
P kE xYF

xYλ
 can be computed efficiently 

using a variant forward-backward algorithm. For a 
given x, define the transition matrix for position i as 

),,,(exp],[ 11 iyyyyM iiiii xλf −− =  
),,,(],[feature, local a be Let 1

)(
1 iyyfyyff iij

i
iiji x−− = ,

∑ −=
i iijj iyyfF ),,,(),( 1 xxy , Then 
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   (4) 

If we calculate it in a naïve fashion, we can easily 
find that such calculations are intractable since there 
are |Y|n  possible corresponding label sequences if x 
has n tokens. 
    Fortunately, the right-hand side of (4) can be 
rewritten as 

),,,'()|,'( )()(

,'
1 iyyfyyyyp k

j
k

i
i

yy
i xx∑∑ ==−λ ,    (5) 

eliminating the need to sum over |Y|n  sequences. 
Furthermore, we calculate )|,'( )(

1
k

ii yyyyp x==−λ in 
a forward-backward algorithm like fashion. 
    Defining forward and backward vectors - iα  and 

iβ  respectively: 
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Then, equation (5) can be rewritten as follows: 
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4.3. Training method 

(Lafferty, McCallum, & Pereira, 2001) used 
iterative scaling algorithms for CRF training, 
following earlier work on maximum entropy models 
for natural language (Berger, Pietra, & Pietra, 1996). 
But they are too slow when many correlated features 
are involved. Our CRF package uses limited-memory 
quasi-Newton (L-BFGS) (Nocedal & Wright, 1999) 
method to perform comparably on very large 
problems (about millions of features).  
    Newton methods for nonlinear optimization use 
second order information to find search directions. It 
is not practical to obtain exact second order 
information for CRF training. L-BFGS estimates the 
curvature numerically from previous gradients and 
updates. (Malouf, 2002) indicates that L-BFGS 
performs well in maximum-entropy classifier training. 
More detailed description of this method can be 
found in (Nocedal & Wright, 1999). 

5. Linguistic Features 

Feature selection is critical to the success of 
machine learning approaches. In this section, we 
describe the features available for our system. We 
will illustrate how to calculate values of feature 
functions. The effectiveness of each feature is also 
discussed. 

5.1. Orthographical Features 

Table 1 lists some orthographical features used in 
our system. In our experience, ALLCAPS, 
CAPSMIX, and INITCAP are more useful than 
others. 

5.2. Context Features 

Words preceding or following the target word may 
be useful for determining its category. Take the 
sentence “The IL-2 gene localizes to bands BC on 
mouse Chromosome 3” for example. If the target 
word is “IL-2,” the following word “gene” will help 
the CRF model to distinguish IL-2 gene from the 
protein of the same name. Obviously, the more 
context words analyzed the better and more precise 
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the results. However, widening the context window 
quickly leads to an explosion of the number of 
possibilities to calculate. In our experience, a suitable 
window size is five. (That is, the two preceding 
words, the current word, and the two following 
words). Such a window size is also suitable for most 
tagging problem, such as POS tagging (Giménez & 
Márquez, 2004). 

 
Table 1  
Orthographical features 

Feature name Regular Expression 

INITCAP [A-Z].* 

CAPITALIZED [A-Z][a-z]+ 

ALLCAPS [A-Z]+ 

CAPSMIX .*[A-Z][a-z].*| 

.*[a-z][A-Z].* 

ALPHANUMERIC .*[A-Za-z].*[0-9].*| 

.*[0-9].*[A-Za-z].* 

SINGLECHAR [A-Za-z] 

SINGLEDIGIT [0-9] 

DOUBLEDIGIT [0-9][0-9] 

INTEGER -?[0-9]+ 

REAL -?[0-9][.,]+[0-9]+ 

ROMAN [IVX]+ 

HASROMAN .*\\b[IVX]+\\b.* 

HASDASH .*-.* 

INITDASH -.* 

ENDDASH .*- 

PUNCTUATION [,.;:?!-+] 

QUOTE [\"`'] 

    

5.3. Part-of-speech Features 

Part of speech information is quite useful for 
identifying named entities. Verbs and prepositions 
usually indicate an NE’s boundaries, whereas nouns 
not found in the dictionary are usually good 
candidates for named entities. Unlike context-word 
features, where extending the window increases 
accuracy, including extended POS information often 
introduces more noise. Our experience indicates that 
five is also a suitable window size. The MBT POS 

tagger (Daelemans, Zavrel, Berck, & Gillis, 1996) is 
used to provide POS information. We trained it on 
GENIA 3.02p and achieves 97.85% accuracy. 

5.4. Word Shape Features 

Certain kinds of named entities, which belong to 
the same class, are similar to each other—for 
example, IL-2 and IL-4. So we have come up with 
simple way to normalize all similar words. According 
to our method, capitalized characters are all replaced 
by 'A', digits are all replaced by '0', non-English 
characters are replaced by ‘_’ (underscore), and non-
capitalized characters are replaced by ‘a’. For 
example, Kappa-B will be normalized as "Aaaaa_A'. 
To further normalize these words, we shorten 
consecutive strings of identical characters to one 
character. For example, "Aaaaa_A" is normalized to 
'Aa_A'. After applying the first normalization method, 
the two proteins “IL-1” and “IL-2” will get the same 
feature value. After applying the second 
normalization method, “IL-2” and “IL-21” will get 
the same feature value. Therefore, applying our 
normalization methods will group similar names into 
the same NE class.  

5.5. Prefix and Suffix Features 

Some prefixes and suffixes can provide good clues 
for classifying named entities. For example, words 
which end in "~ase" are usually proteins. However, 
short prefixes or suffixes are too common to be of 
any help in classification. For example, it would be 
difficult to guess to which category a word ending in 
"~es" belongs. In our experience, the acceptable 
length for prefixes and suffixes is 3-5 characters. The 
longer the prefix or suffix, the fewer matches will 
occur. 

5.6. Dictionary Features 

Depending on the quality of a given dictionary, 
our system uses one of two different lexicon features 
to estimate the possibility of a token in a biomedical 
named entity. 
Exact Matching 
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We start by setting one or more dictionary feature 
functions for every token in the corpus.  These 
features, described as “dictionary name”+length of 
token string, tell us whether a token matches a 
dictionary entry and whether it is part of a multi-
token string that matches a compound NE or NE 
phrase in the dictionary.  Imagine our corpus contains 
the token string “interlukin-2 gene,” a two-word 
compound NE. Given that we are using dictionary D, 
the token interluken-2’s D1 and D2 features will be 
activated because it appears in the dictionary twice, 
both by itself and as part of a two-word compound 
NE.  The token “gene,” on the other hand, will only 
have its D2 feature activated because it does not 
appear alone in the dictionary.  We proceed as 
described above, setting features cumulatively for 
token strings of up to five words.  

We use this exact matching method with two 
dictionaries. The first is from the BioCreative 2004 
task (Valencia & Blaschke, 2004). This dictionary 
consists mainly of proteins and genes, which 
effectively reduces false negatives. The second is an 
edited version of the 240,000-word Longman 
dictionary from which we excluded any terms found 
in biomedical NEs in the GENIA corpus. In our 
experiments, we found that when these two 
dictionaries are used individually, no improvement in 
performance results, but when they are used together, 
they function complimentarily, effectively improving 
performance. Therefore, this feature function input 
aids our CRF model in differentiating between 
biomedical and non-biomedical terms. 
Distance Measurement 

In the biomedical domain, it’s difficult to find a 
dictionary which contains all possible variations of 
biomedical names. For example, it’s difficult to find 
a dictionary which contains all names of IL-family 
proteins. Therefore, it is useful to measure the 
similarity (distance) between tokens and words in an 
external biomedical dictionary and set this as a 
feature function. The following definition and 
description mainly comes from (Cohen & Sarawagi, 
2004). 

Let D be a dictionary of entity names and d be a 
distance metric for entity names. Define )(/ xg dD  to 
be the minimum distance between a token x and any 
entity name e in D: 

),(min)(/ xdxg
DdD e

e∈
=  

For example, if D contains the two strings 
“frederick flintstone” and “barney rubble”, and d is 
the Jaro-Winkler distance metric (Winkler, 1995), 
then )"Fred("/ dDg = 0.84 and )"please Fred("/ dDg = 
0.4, since )"flintstonefrederick ","Fred("d = 0.84 and 

)"flintstonefrederick ","please Fred("d = 0.4. 
Here, we extended the distance features described 

to tokens—i.e., for each distance d, we compute as a 
feature of token x the minimum distance between x 
and an entity in the dictionary D. These features are 
less natural for tokens than for segments, but turned 
out to be surprisingly useful (Cohen & Sarawagi, 
2004), perhaps because weak partial matches to 
entity names are informative. 

We used two dictionaries: Gene and GeneAlias, 
which are extracted from Swissprot and LocusLink, 
and three distance functions from the SecondString 
open source software package (Cohen & Ravikumar, 
2003): Jaccard, Jaro-Winkler, and SoftTFIDF. We 
describe the relationships among these three distance 
functions in the next paragraph. 

Briefly, the Jaccard distance between two sets S 
and S’ is |'|/|'| SSSS ∪∩ : in SecondString, this is 
applied to strings by treating them as sets of words. 
The Jaro-Winkler distance is a character-based 
distance, rather than a word-based distance. It is 
based on the number of characters which appear in 
approximately the same position in both strings. 
TFIDF is another word-based measure. As with 
Jaccard distance, TFIDF scores are based on the 
number of words in common between two strings; 
however, rare words are weighted more heavily than 
common words. SoftTFIDF is a hybrid measure, 
which modifies TFIDF by considering words with 
small Jaro-Winkler distance to be common to both 
strings. 

5.7. Noneffective Features 

Below we list some features mentioned in other 
biomedical NER systems that did not improve our 
system.  
POS+Target Word Feature 

Some combinations of POSes and target words (W) 
are good indicators of NEs. For example, a phrase 
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constructed by an adjective + a protein name (nuclear 
BSAP) is usually still a protein name. Therefore, we 
created a feature group as follows: 

 tagPOS s word'preceding  themeans 
 and rdcurrent wo  themeans  where

  and  

1

1

−

− ==

i

i

ii

p
w

pw
 

 
In our experiment, this configuration actually 

reduces performance by 0.60%. We find that certain 
combinations of 1 and  −= ii pw  are not useful. For 
example, if the target word is not a noun, then this 
feature generally does not boost accuracy. In general, 
it is useful to look at the target word rather than its 
combination with the previous word.  
Verb+Word Features 

The proximity of certain verbs appearing before 
iw  can sometimes be used to determine the target 

word’s category. For example, in the phrase “infect  
noncycling B cells,” the appearance of the verb 
“infect” prior to our target word, “cells,” may help 
disambiguate s'iw  tag from cell line to cell type.  

We also designed an experiment for feature; 
however, performance still dropped by 0.4%. We 
assume that, like the POS+Target Word feature, only 
some combinations can help assign the tag of the 
target word. 

The above two composite features were used by 
(Finkel, Dingare, Nguyen, Nissim, Manning, & 
Sinclair, 2004) and may work well in an MEMM-
based BioNER System. However, they don’t report 
the contribution of features individually. Thus, from 
this experiment, we could only conclude that 
composite features may indeed be quite useful so 
long as they are carefully selected. 

6. The post-processing method 

In our system, we have two post-processing 
modules. One uses NE nesting rules to fix boundary 
errors. The other uses the rightmost word of an NE to 
fix classification errors. We describe them in the 
following sections. 

6.1. Nested NE Resolution 

According to (Shen, Zhang, Zhou, Su, & Tan, 
2003), 16.57% of entity names in GENIA V3.02 have 
nested constructions, e.g. 

 
<DNA> <protein> IL-2 </protein> gene </DNA> 

 
In the JNLPBA 2004 task, all nested mark-up tags 

are removed leaving only outside annotation.  Even 
though our system is trained to recognize outside 
NEs, in some cases it still makes errors. Take the 
phrase “IL-2 gene expression” for example. Our 
system tends to tag “IL-2” as a stand-alone protein 
because in the GENIA corpus, “IL-2” appears alone 
far more frequently than it appears collocated with 
“gene.” When our system is trained, it calculates a 
higher value [0.36] for P(yi=B-protein| xi=IL-2) than 
that [0.18] for P(yi=B-DNA| xi=IL-2). Furthermore, 
P(yi=O|xi=expression, yi-1=O) is also higher than 
P(yi=O|xi=expression, yi-1=I-DNA). Referring to 
Table 2, one can see that P(Y#1|X) is higher than 
P(Y#2|X). So, even though “gene” has high 
probability of being tagged as “I-DNA,” the sequence 
with the highest probability is still [B-Protein, O, O], 
which is denoted as Y#1 in the following table. 
 

Table 2 
Probability table for the phrase “IL-2 gene expression” 

X IL-2 gene expression P(Y|X)

Y#1 

P(yi|xi,yi-1)

B-protein

0.36 

O 

0.32 

O 

0.57 

 

0.066

Y#2 

P(yi|xi,yi-1)

B-DNA 

0.18 

I-DNA 

0.80 

O 

0.22 

 

0.032

*Y#n denotes the nth candidate for Y 
 
To resolve the nested NEs, (Zhou, 2004) uses a 

pattern-based module. He found six patterns of 
nested entity name constructions. Here, we extract all 
NEs which contain one or more shorter NEs, and use 
them to produce rules. For example, if we extract 
from the following NE 
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<DNA> <protein> IL-2 </protein> gene </DNA> 

 
Then we can produce a context-free 
rule: >→<+>< DNAgeneprotein . 

This module can be used in any machine learning 
Biomedical NER system, which uses GENIA corpus 
as their training/test dataset. For example, (Zhou, 
2004) improved F-score by 3.1% on his HMM-based 
Biomedical NER system. We have used it with our 
CRF-based system, and it improved F-score by 
0.36%. 

6.2. Reclassification based on the rightmost word 

We count the occurrences of a word x appearing in 
the rightmost position of all NEs in each category. 
Let the maximum occurrence be n, and the 
corresponding category c. The total number of 
occurrences of x in the rightmost position of an NE is 
T. c/T is the consistency rate of x. According to our 
analysis of the training set of the JNLPBA 2004 data, 
75% of words have a consistency rate of over 95%. 
We record this 75% of words and their associated 
categories in a table. After testing, we crosscheck all 
the rightmost words of NEs found by our system 
against this table. If they match, we overwrite the 
NEs’ categories with those from the table.  

7. Experiment 

7.1. Datasets 

In our experiment, to compare with other 
biomedical NER systems, we use two corpora. One is 
the GENIA version 3.02 corpus (Kim, Ohta, Teteisi, 
& Tsujii, 2003) and the other is the dataset used in 
the JNLPBA 2004 shard task. The GENIA corpus is 

formed from a controlled search on MEDLINE using 
the MeSH terms ‘human’, ‘blood cells’ and 
‘transcription factors’. In that search, 2,000 abstracts 
are selected and annotated by hand according to a 
small taxonomy of 48 classes. Among these, 36 
terminal nodes in the taxonomy are used for 
annotation. Several biomedical NER systems use the 
GENIA corpus as training and test data (Lee, Hwang, 
& Rim, 2003; Zhou, Zhang, Su, Shen, & Tan, 2004). 

In the JNLPBA 2004 shared task, the GENIA 
corpus is still used as training data. However, the 
original 36 classes are simplified to 5 classes: protein, 
DNA, RNA, cell line and cell type. 

To simplify the annotation task to a simple linear 
sequential analysis problem, embedded structures 
have been removed leaving only the outermost 
structures. Consequently, a group of coordinated 
entities involving ellipsis are annotated as one 
structure as in the following example: 
 

... in [lymphocytes] and [T- and B- 
lymphocyte] count in ... 

 
In the example, “T- and B-lymphocyte” is 

annotated as one structure but involves two entity 
names, “T-lymphocyte” and “B-lymphocyte”, 
whereas “lymphocytes” is annotated as one entity and 
involves as many entity names. 

To ensure objectivity of the evaluation, 404 
newly-annotated MEDLINE abstracts from the 
GENIA project are used as test data. They were 
annotated with the same five entity categories. Half 
of these abstracts were from the same domain as the 
training data and the other half were from the super-
domain of “blood cells” and “transcription factors”. 
We hope this can provide an important test of 
generality in the methods used. The basic statistics 
for the training and test data are summarized in Table 
3. 

Table 3 
Basic statistics for the data sets 

 # abstracts # sentences # words 

Training Set 2,000 18,546 472,006 (236.00/abs) (22.97/sen) 

Test Set 404 3,856 96,780 (239.55/abs) (22.72/sen) 
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7.2. Evaluation Methodology 

Results are given as F-scores using a modified 
version of the CoNLL evaluation script and are 
defined as F = (2PR)/(P + R), where P denotes the 
precision and R denotes the recall. P is the ratio of 
the number of correctly found NE chunks to the 
number of found NE chunks, and R is the ratio of the 
number of correctly found NE chunks to the number 
of true NE chunks. The script outputs three sets of F-
scores according to exact boundary match, right and 
left boundary matching. In the right boundary 
matching only right boundaries of entities are 
considered without matching left boundaries and vice 
versa.  

7.3. Results 

In Table 5, the NER performance of each 
configuration is compared based on the feature 
groups and post-processing methods used in it. We 
can see that our NER model with the first six feature 
groups (conf#1) achieves an F-score of 69.7. 
Obviously, the ineffective features listed in Section 
6.7 lowered the F-score by at most 0.7% (conf#2 and 
conf#3). We can see that both post-processing 
methods slightly improve the F-score in conf#4 and 

conf#5.  
In Table 6, we list precision, recall, and F-scores 

for each category of NE. We can see that F-scores for 
protein and cell-type are comparably high. We think 
this is because protein and cell type are among the 
top three most frequent categories in the training set 
(as shown in Table 4). One notices, however, that 
although DNA is the second most frequent category, 
it does not have a high F-score. We think this 
discrepancy is due to the fact that DNA names are 
commonly used in proteins, causing a substantial 
overlap between these two categories. RNA’s 
performance is comparably low because its training 
set is much smaller than other categories. Cell line’s 
performance is the lowest since it overlaps heavily 
with cell type and its training set is also very small. 

In Table 7, we compare our system with other 
pure Markov model based systems in the JNLPBA 
2004 task. Our system performs slightly better than 
(Finkel, Dingare, Nguyen, Nissim, Manning, & 
Sinclair, 2004) and (Settles, 2004). This is probably 
due to the nature of CRF and the effective use of 
external dictionaries. 

In Table 8, we compare our system with others 
that use GENIA V3.02 as their training/test corpus. 
Like other systems, we apply 10-fold cross validation 
on GENIA V3.02. Since there’s no agreement on 

Table 4 
Absolute (and relative) frequencies for NEs in each data set.  

 protein DNA RNA cell type cell line all 

Training Set 30,269 (15.1) 9,533 (4.8) 951 (0.5) 6,713 (3.4) 3,830 (1.9) 51,301 (25.7)

Test Set 5,067 (12.5) 1,056 (2.6) 118 (0.3) 1,921 (4.8) 500 (1.2) 8,662 (21.4)

 

Table 5 
NER performance of each configuration on the JNLPBA 2004 data. Fort, Fcon, Fpos, Fwor, Fpre/suf, Fdic, Fpos+T, and FvW denote 
orthographical, context, POS, word-shape, POS+Target word, and Verb+Word features, respectively. NR and RC have been explained 
in Section 3. 

 Fort Fcon Fpos Fwor Fpre/suf Fdic Fpos+T FvW NR RC Precision Recall F-score

conf#1 √ √ √ √ √ √     68.6 70.9 69.7 

conf#2 √ √ √ √ √ √ √    68.2 70.0 69.1 
conf#3 √ √ √ √ √ √  √   67.6 70.5 69.0 
conf#4 √ √ √ √ √ √   √  69.0 71.2 70.1 
conf#5 √ √ √ √ √ √   √ √ 69.1 71.3 70.2 
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which NE should be used to evaluate these systems, 
we use the most popular and representative categories: 
protein and DNA. Our system outperforms other 
systems of this type by an increase in protein F-score 
of at least 2.6%. For DNA names, our performance is 
close to the best system. 

 
Table 6 
NER performance of each NE category on the JNLPBA 2004 data 

NE category Precision Recall F-score 

protein 67.9 75.9 71.7 

DNA 68.3 65.6 67.0 

RNA 58.6 63.6 61.0 
cell line 55.8 56.4 56.1 
cell type 78.8 66.7 72.3 
Overall 69.1 71.3 70.2 

 

Table 7 
NER performance comparison of Markov model based Systems on 
the JNLPBA 2004 data 

System Precision Recall F-score

Our System (CRF) 69.1 71.3 70.2 

Finkel et al., 2004 (MEMM) 68.6 71.6 70.1 
Settles et al., 2004 (CRF) 69.3 70.3 69.8 

Zhao, 2004 (HMM) 61.0 69.1 64.8 
 

Table 8 
Protein and DNA name recognition performance on the GENIA 
V3.02 corpus 

System Protein DNA 

Our System (CRF) 78.4 66.3 

Zhou et al., 2004 (HMM) 75.8 63.3 

Lee et al., 2003 (2Phase SVM) 70.6 66.4 

 
In Table 9, we report F-scores for different 

boundary matching criteria: exact boundary match 
(Exact Match), right boundary match (Right Match) 
and left boundary match (Left Match). We can see 
that with relaxed boundary matching, the F-scores 
increase from 4.3% (Left Match) to 8.2%. Relaxed 
boundary matching may cause some NEs that have 
descriptive preceding adjectives or rightmost head 
nouns to be tagged correctly. However, it also results 
an increase of other types of errors. We think the 
degree of relaxation should be based on NER 

applications. 
 

Table 9 
F-score of each NE category for different matching criteria on the 
JNLPBA 2004 data 

NE category Exact Match Left Match Right Match 

protein 71.7 77.4 79.0 

DNA 67.0 69.5 75.4 

RNA 61.0 64.2 76.4 
cell line 56.1 59.7 66.1 
cell type 72.3 73.6 81.9 
Overall 70.2 74.5 78.4 

8. Analysis and discussion 

Recognition disagreement between our system and 
GENIA is caused by the following two factors: 
1. Annotation problems in GENIA corpus: 

Although there are no inter-annotator agreement 
results for the GENIA corpus, we have found that 
some studies of inter-annotator agreement for 
biomedical named entities have measured agreement 
between 87% (Hirschman, 2003) and 89% 
(Demetrious & Gaizauskas, 2003). We further 
summarize the annotation problems into four sub-
problems. All these problems are caused mainly by 
inconsistent annotation.  
(a) Preceding adjective problem 

Some descriptive adjectives are annotated as parts 
of the following NE, but some are not. In fact, it is 
even hard for biologists to decide whether descriptive 
adjectives, such as “normal”, “activated”, etc, should 
be part of entity names. Take “human” for example. 
Of the 1790 times it occurred before or at the 
beginning of an entity in the training data, it was not 
recognized as a part of an entity 110 times. But in test 
data, in only one out of 130 appearances is it 
excluded from an NE. This irregularity really 
confuses NER systems and weakens the reliability of 
evaluation results on the GENIA corpus. 
(b) Nested NE problem 

In GENIA, we found that in some instances only 
embedded NEs are annotated while in other instances, 
only the outside NE is annotated. However, 
according to the GENIA tagging guidelines, the 



 Elsevier Science 14 

outside NE should be tagged. For example, in the 
training set of the JNLPBA 2004 data, in 59 instances 
of the phrase “IL-2 gene”, “IL-2” is tagged as a 
protein 13 times, while in the other 46 it is tagged as 
a DNA. This irregularity can confuse machine 
learning based systems. 
(c) Cell-line/cell-type confusion 

NEs in the cell line class are from certain cell 
types. For example, the HeLa cell line is from human 
origin or cellular products. Given the abbreviated 
content of an abstract, it is difficult even for an expert 
to distinguish them. In GENIA, most instances of 
“granulocytic colonies” are tagged as cell line; 
however, in the phrase “stimulated primary murine 
bone marrow cells to form granulocytic colonies in 
vitro”, the same phrase “granulocytic colonies” is 
tagged as a cell type.  
(d) Missing tag 

In the training data of the JNLPBA 2004 data, 
NEs of each category, especially of cell line, are not 
tagged. This incorrect annotation causes a large 
number of false negatives, especially in the cell line 
category. We see many instances of “T cell”, 
“Peripheral blood neutrophil”, and “NK cell” not 
tagged as cell lines. 
2. System recognition errors  

The other cause of disagreement is our system’s 
tagging errors. We categorize errors into four 
subtypes: 
(a) Misclassification 

Some protein molecules or regions are 
misclassified as DNA molecules or regions. These 
errors may be solved by exploiting more context 
information—that is, more understanding of the 
sentences. 
(b) Coordinated phrase problem 

In GENIA, most conjunction phrases are tagged as 
single NEs. However, conjunction phrases are 
usually composed of several NEs, punctuation, and 
conjunctions such as “and”, “or” and “but not”. The 
construction of a conjunction phrase is sometimes 
long and complicated, containing more than three 
NEs and mixed with other words. Therefore, our 
system sometimes only tags one of these NE 
components. For example, in the phrase “c-Fos and 
c-Jun family members”, only “c-Jun family 
members” is tagged as a protein by our system, while 
in GENIA, the whole phrase is tagged as a protein. 

(c) False positive 
Some entities appeared without accompanying a 

specific name, for example, only mention about “the 
epitopes” rather than which kind of epitopes. The 
GENIA corpus tends to ignore these entities, but their 
contexts are similar to the entities with specific 
names, therefore, our system sometimes incorrectly 
recognizes them as an NE. 

9. Conclusion 

Our system successfully integrates linguistic 
features into the CRF framework. We have made 
quite an effort to find the appropriate use for every 
kind of linguistic information available. Our 
experimental results indicate that most of these 
linguistic features are effective besides some 
composite ones. Through these broad linguistic 
features and the nature of CRF, our system 
outperforms state-of-the-art Markov model based 
systems, especially in the recognition of protein 
names. 

From our analysis, it is still difficult to recognize 
long, complicated NEs and to distinguish between 
two highly overlapped NE classes, such as cell-line 
and cell-type. This is due to the fact that, biomedical 
texts have complicated sentence structures and 
involve more expert knowledge than general domain 
news articles. Another serious problem is the 
annotation inconsistency, which confuses the 
machine learning models and makes the evaluation 
difficult.  

Certain errors, such as those in boundary 
identification, are more tolerable if the main purpose 
is to discover relations between NEs. We shall 
exploit more linguistic features such as composite 
features and external features. Finally, to reduce 
human annotation efforts and to alleviate the scarcity 
of available annotated corpora, we shall develop 
machine learning techniques to learn from Web 
corpora in different biomedical domains. 
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