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Prediction of subcellular localization of proteins is important for genome annotation, protein function prediction, and drug discovery. We 
present a prediction method for Gram-negative bacteria that uses ten one-versus-one support vector machine (SVM) classifiers, where 
compartment-specific biological features are selected as input to each SVM classifier. The final prediction of localization sites is deter-
mined by integrating the results from ten binary classifiers using a combination of majority votes and a probabilistic method. The overall 
accuracy reaches 91.4%, which is 1.6% better than the state-of-the-art system, in a ten-fold cross-validation evaluation on a benchmark 
data set. We demonstrate that feature selection guided by biological knowledge and insights in one-versus-one SVM classifiers can lead 
to a significant improvement in the prediction performance. Our model is also used to produce highly accurate prediction of 92.8% over-
all accuracy for proteins of dual localizations. 

                                                           
* Corresponding author. 

1.   INTRODUCTION 

Gram-negative bacteria have five major subcellular lo-
calization sites, which are the cytoplasm (CP), the inner 
membrane (IM), the periplasm (PP), the outer mem-
brane (OM), and the extracellular space (EC). Predic-
tion of protein subcellular localization for Gram-
negative bacteria has been extensively studied and sev-
eral systems have been developed. PSORT I1 has been a 
widely used prediction tool. Gardy et al.2 proposed 
PSORT-B, a multi-modular method combined with a 
Bayesian network, to improve the performance of 
PSORT I. Although PSORT-B has a high precision, it 
only yields an overall prediction recall, also referred to 
as accuracy, of 74.8%. Yu et al.3 presented an approach 
called CELLO that utilized support vector machines 
(SVM) based on n-peptide compositions. The overall 
prediction accuracy of CELLO reaches 88.9% but the 
accuracy for extracellular proteins is still relatively low, 
at 78.9%. Recently, Wang et al.4 developed a system 
called P-CLASSIFIER that used multiple SVM based 
on amino acid subalphabets. The system attains an 
overall prediction accuracy of 89.8%. 

In this study, we present a method called PSL101 
(Protein Subcellular Localization prediction by 1-On-1 
classifiers) that incorporates compartment-specific bio-
logical features in ten one-versus-one (1-v-1) SVM 
classifiers to predict protein subcellular localization for 

Gram-negative bacteria. Given a protein sequence, 
PSL101 constructs feature vectors extracted from spe-
cific input features that are characteristic of a given lo-
calization. These features include amino acid composi-
tion, di-peptide composition, solvent accessibility, sec-
ondary structure, signal peptides, transmembrane α-
helices, transmembrane β-barrels, and non-classical 
protein secretion. Biological knowledge and insights are 
used to guide our feature selection in the classification 
of different compartments. The output probability val-
ues from ten binary classifiers are integrated by a com-
bination of majority votes and a probabilistic method to 
determine the final prediction of localization sites. Ex-
periment results show that our method attains an overall 
prediction accuracy of 91.4%, which has presently the 
most accurate prediction performance for single-
localized proteins. Based on a forward feature selection 
algorithm, the final feature combinations correlate well 
with biological insights. We further make use of this 
method in the prediction of dual-localized proteins and 
obtain an overall accuracy of 92.8%. 

2.   METHODS 

2.1.   SVM framework 

SVM has been widely used in pattern recognition appli-
cations on data mining and bioinformatics. Prediction of 
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protein subcellular localization can be treated as a 
multi-class classification problem. For multi-class clas-
sification, the one-versus-rest (1-v-r) SVM model has 
demonstrated a good classification performance5. How-
ever, for any localization site, it is difficult to find a 
universal set of biological features from the remaining 
four sites that can be effectively used for 1-v-r SVM 
model. Based on biological domain knowledge, com-
partment-specific biological features should be used in 
distinguishing two localization sites, and this presuppo-
sition is later confirmed by our experiment results. Thus, 
we propose to use ten 1-v-1 SVM classifiers for protein 
subcellular localization prediction. The system architec-
ture of PSL101 is shown in Fig. 1. 

The LIBSVM6 software is used in our experiments. 
For all classifiers, we use Radial Basis Function (RBF) 
kernel and optimize the cost (c) and gamma (γ) parame-
ters. The probability estimates by LIBSVM are used for 
determining the confidence levels of classifications7. 

2.2.   Biological input features 

In Gram-negative bacteria secretory pathways, proteins 
localized to a particular subcellular compartment have 
distinct biological properties. We consider the following 
nine biological input features to distinguish between 
proteins translocated to different compartments and 

construct our classification framework to mimic the 
translocation process of bacterial secretory pathways.  
1. Amino acid composition (AA). Protein descriptors 

based on n-peptide compositions or their variations 
have been shown effective in protein subcellular 
localization prediction3,4. If n = 1, then the n-
peptide composition reduces to the amino acid 
composition. The feature vector is of dimension 21 
(i.e., 20 amino acids types plus a symbol ‘X,’ for 
others).  

2. Di-peptide composition (Dip). The n-peptide com-
positions preserve more global sequence informa-
tion when n gets larger. For computational effi-
ciency, we choose n = 2, the di-peptide composi-
tion. This feature vector has dimension 441 (21×21).  

3. Solvent accessibility (SA). Protein structures from 
different compartments show characteristic differ-
ences, particularly at the surface, which is directly 
exposed to the environment. Proteins in different 
localization sites have different surface residue 
compositions. Cytoplasmic proteins have a balance 
of acidic and basic surface residues, while extracel-
lular proteins have a slight excess of acidic surface 
residues8. Thus, solvent accessibility represented by 
the amino acid composition of surface residues 
could be useful to identify extracellular proteins.  

4. Secondary structure elements (SSE). Transmem-
brane α-helices are frequently observed in inner 
membrane proteins while transmembrane β-barrels 
are largely found in outer membrane proteins9. The 
secondary structure elements are useful for detect-
ing proteins localized in the inner membrane and 
the outer membrane. We compute the amino acid 
compositions of three secondary structure elements 
(α-helix, β-strand, and random coil) based on the 
predicted results from HYPROSP II10, a knowl-
edge-based secondary structure prediction approach.  

5. Signal peptides (Sig). Signal peptides are N-
terminal peptides typically between 15 and 40 
amino acids long, and they target proteins for trans-
location through the general secretory pathway11. 
The presence of a signal peptide suggests that the 
protein does not reside in the cytoplasm. SignalP12, 
a neural network and hidden Markov model based 
method, is used to predict the presence and location 
of signal peptide cleavage sites in protein se-
quences. We employ this prediction method to dis-
tinguish cytoplasmic and non-cytoplasmic proteins.  

Fig. 1. System architecture of one-versus-one SVM models based on 
compartment-specific features.  
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6. Transmembrane α-helices (TMA). Integral inner 
membrane proteins are characterized by transmem-
brane α-helices. The presence of transmembrane α-
helices could imply that the protein is located in the 
inner membrane. TMHMM13 is a hidden Markov 
model based method for the prediction of trans-
membrane α-helices and their topology in proteins. 
We apply TMHMM to identify potential trans-
membrane α-helical proteins residing in the inner 
membrane.  

7. Twin-arginine signal peptides (TAT). The twin ar-
ginine translocase (TAT) system exports proteins 
from the cytoplasm to the periplasm. The proteins 
translocated by TAT bear a unique twin-arginine 
motif14. The presence of the motif is a useful fea-
ture to distinguish periplasmic and non-periplasmic 
proteins. TatP server15 uses a combination of two 
neural networks to predict the presence and loca-
tion of twin-arginine signal peptide cleavage sites 
in bacteria. This server is used to detect TAT. 

8. Transmembrane β-barrels (TMB). A large number 
of proteins residing in the outer membrane are 
characterized by β-barrel structures. Thus, they 
could be a candidate feature to detect outer mem-
brane proteins. TMB-Hunt16 is a method that uses a 
modified k-Nearest Neighbor (k-NN) algorithm to 
distinguish protein sequences of transmembrane β-
barrel (TMB) from non-TMB on the basis of amino 
acid composition. We employ TMB-Hunt to iden-
tify potential outer membrane proteins.  

9. Non-classical protein secretion (Sec). It had been 
believed for a long time that an N-terminal signal 
peptide was strictly required to export a protein to 
the extracellular space. Recent studies, however, 
have shown that several extracellular proteins can 
be secreted without a classical N-terminal signal 
peptide17. Identification of non-classical protein se-
cretion, which is not triggered by signal peptides, 
could be a potential discriminator for cytoplasmic 
and extracellular proteins. Predictions produced 
from SecretomeP18, a non-classical protein secre-
tion method, are applied in our experiments.  

2.3.   Feature selection in SVM classifi-
ers 

Since it is unlikely to try all possible feature combina-
tions in different classifiers, heuristics guided by bio-
logical insights are used to determine a small subset of 

input features specific to each classifier. Starting with 
an empty subset, a forward feature selection algorithm 
keeps adding the best features that lead to an improve-
ment on the accuracy of the classifiers. The process is 
terminated if adding the features no longer improves the 
accuracy.  

2.4.   Class determination 
In order for each binary classifier Ci,j to distinguish class 
i and j, the input feature vector is constructed by con-
catenating different biological features refined specifi-
cally according to the intrinsic characteristics of pro-
teins in localization sites i and j. We utilize several pre-
diction methods to extract specific features based on 
biological domain knowledge. For each protein in the 
testing set, a predicted class and its corresponding prob-
ability are returned from each classifier. 

In order to determine the predicted localization site 
of each protein, we combine the predicted results from 
ten binary classifiers by majority votes. In the case of a 
tie, the localization site with the highest average prob-
ability is assigned as the final prediction of localization 
site.  

3.   RESULTS AND DISCUSSION 

3.1.   Benchmark data set 
To train and test our method, we use a benchmark data 
set of proteins from Gram-negative bacteria applied in 
previous works1-4. It consists of 1,441 proteins with 
experimentally determined localizations, in which 1,302 
proteins have a single localization site and 139 proteins 
have dual localization sites. Table 1 lists the number of 
proteins in different sites in the data set.  
 
 

Table 1. Number of proteins in different localization sites. 

Localization sites No.

Cytoplasmic (CP) 248
Inner membrane (IM) 268
Periplasmic (PP) 244
Outer membrane (OM) 352
Extracellular (EC) 190

Cytoplasmic / Inner membrane (CP / IM) 14
Inner membrane / Periplasmic (IM / PP) 49
Outer membrane / Extracellular (OM / EC) 76

All sites 1,441
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3.2.   Evaluation measures 
For comparison with other approaches, we follow the 
same measures used in previous works1-4 to evaluate the 
performance of our method. Accuracy (Acc) and Mat-
thew’s correlation coefficient (MCC)19 defined in Eq. (1) 
and (2) are used to assess the performance at five local-
ization sites. The overall accuracy is defined in Eq. (3).  

 i i iAcc TP N=  (1) 
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where l = 5 is the number of total localization sites, and 
TPi, TNi, FPi, FNi ,and Ni are the number of true posi-
tives, true negatives, false positives, false negatives, and 
proteins in localization site i, respectively. MCC, con-
sidering both under-and over-predictions, offers a com-
plementary measure for the prediction performance, 
where MCC = 1 indicates a perfect prediction and MCC 
= 0 indicates a completely random assignment.  

Due to different intrinsic characteristics of single 
localization and dual localization proteins, their predic-
tion results are reported separately. 

3.3.   Results of single localization pro-
teins 

In Table 2, we compare the performance of our ap-
proach with other approaches using 1,302 single-
localized proteins in a ten-fold cross validation test. The 
overall accuracy of PSL101 reached 91.4%, which is 
1.6% better than the state-of-the-art system, P-
CLASSIFIER. In addition, PSL101 outperforms P-

CLASSIFIER in terms of MCCs except for extracellular 
proteins. The compartment-specific features selected in 
PSL101 are summarized in Table 3. The experiment 
results show that our feature selection not only leads to 
a significant improvement in the overall accuracy but 
also correlates well with biological insights. For exam-
ple, PSL101 selects signal peptides and transmembrane 
α-helices as the optimal features to distinguish proteins 
localized in the cytoplasm (no signal peptides) and the 
inner membrane (presence of transmembrane α-helices). 

3.4.   Results of dual localization pro-
teins 

For dual localization classification, we conduct two 
experiments. In the first experiment, we compare with 
P-CLASSIFIER in which the dual-localized proteins are 
tested with classifiers trained on single-localized pro-
teins. The two localization sites receiving highest prob-
ability sums from the 10 classifiers are assigned as the 
dual localization sites of the protein. Instead of giving 
full marks to dual-localized proteins with at least one 
site predicted correctly, we choose a less biased crite-
rion to assess the performance: if only one of the dual 

 
 

Table 2. The comparison of different approaches in the prediction of subcellular localization for Gram-negative bacteria. 

PSL101  P-CLASSIFIER CELLO PSORT-B  PSORT I 
Localization 

Acc (%) MCC  Acc (%) MCC Acc (%) MCC Acc (%) MCC  Acc (%) MCC 

CP 95.2 0.88  94.6 0.85 90.7 0.85 69.4 0.79  75.4 0.58 
IM 93.7 0.95  87.1 0.92 88.4 0.92 78.7 0.85  95.1 0.64 
PP 87.3 0.84  85.9 0.81 86.9 0.80 57.6 0.69  66.4 0.55 
OM 93.8 0.93  93.6 0.90 94.6 0.90 90.3 0.93  54.5 0.47 
EC 84.2 0.83  86.0 0.89 78.9 0.82 70.0 0.79  − − 

Overall 91.4 −  89.8 − 88.9 − 74.8 −  60.9 − 

 
Table 3. Compartment-specific feature selection. 

1-v-1 classifiers AA Dip SA SSE Sig TMA TAT TMB Sec

CCP, IM     ● ●    
CCP, PP ● ●  ● ●     
CCP, OM  ●   ●   ●  
CCP, EC ● ● ● ●      
CIM, PP ●    ● ● ●   
CIM, OM  ●  ●  ●    
CIM, EC ●  ●   ●    
CPP, OM ● ●      ●  
CPP, EC ● ●        
COM, EC ● ● ● ●      
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sites is predicted correctly, the prediction receives only 
half mark. Table 4 lists the prediction performance. 
PSL101 outperforms P-CLASSIFIER except for the 
class of cytoplasmic/inner membrane, in which there are 
only 14 proteins in the data set.  

In the second experiment, we apply 1-v-1 SVM 
models directly on dual-localized proteins in a ten-fold 
cross validation test. Since there are three pairs of dual 
localization sites: {CP,IM}, {IM,PP}, and {OM,EC}, 
we use the following three 1-v-1 SVM classifiers: 
C{CP,IM},{IM,PP}, C{CP,IM},{OM,EC}, and C{IM,PP},{OM,EC}. For 
each dual-localized protein, ten predicted probabilities, 
generated from previous 10 classifiers trained on single-
localized proteins, comprise the input feature vector (of 
dimension 10). Since the classifier C{CP,IM},{IM,PP} has the 
IM site in common, it requires an additional single lo-
calization classifier CCP,PP to distinguish {CP,IM} and 
{IM,PP}. Thus the final prediction of dual localization 
sites is determined by a combination of the output prob-
abilities from the 3 dual localization classifiers and the 
single localization classifier CCP,PP. The final prediction 
of localization sites are determined by a combination of 
the output probabilities from both dual localization clas-
sifiers and the distinct single localization classifiers. To 
assess the prediction performance, we use the same 
evaluation measures defined in Eq. (1), (2), and (3). The 
predicted results are shown in Table 5. The overall ac-
curacy reaches 92.8% for proteins localized in two dif-
ferent localizations. The results indicate that PSL101 
performs consistently well in both single and dual local-
ization proteins. Thus, the input feature vector of di-
mension 10 trained on single-localized proteins is able 
to capture the important relationships between input 
biological features and characteristics of localization 
sites. 

4.   CONCLUSION 
In this study, we propose a method to predict protein 
subcellular localization using multiple 1-v-1 SVM mod-
els based on compartment-specific features. Experiment 
results show that our method attains high overall predic-
tion accuracies of 91.4% and 92.8% for single and dual 
localization proteins, respectively. The feature combina-
tions generated by a forward feature selection algorithm 
correlate well with biological insights. Our method pro-
vides accurate predictions and suggests useful biologi-
cal features in protein localization prediction.  
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