
 Elsevier 1

Web Taxonomy Integration
with Hierarchical Shrinkage Algorithm and Fine-Grained Relations

Chia-Wei Wua, Richard Tzong-Han Tsaia, Cheng-Wei Leeab,Wen-Lian Hsuab

{cwwu,thtsai,aska,hsu}@iis.sinica.edu.tw
aInstitute of Information Science, Academia Sinica, Taipei, Taiwan

bDepartment of Computer Science, National Tsing-Hua University, Hsingchu, Taiwan
Elsevier use only: Received date here; revised date here; accepted date here

Abstract

We address the problem of integrating web taxonomies from different real Internet applications. Integrating web
taxonomies is to transfer instances from a source to target taxonomy. Unlike the conventional text categorization
problem, in taxonomy integration, the source taxonomy contains extra information that can be used to improve
the categorization. The major existing methods can be divided in two types: those that use neighboring categories
to smooth the document term vector and those that consider the semantic relationship between corresponding
categories of the target and source taxonomies to facilitate categorization. In contrast to the first type of approach,
which only uses a flattened hierarchy for smoothing, we apply a hierarchy shrinkage algorithm to smooth child
documents by their parents. We also discuss the effect of using different hierarchical levels for smoothing. To
extend the second type of approach, we extract fine-grain semantic relationships, which consider the relationships
between lower-level categories. In addition, we use the cosine similarity to measure the semantic relationships,
which achieves better performance than existing methods. Finally, we integrate the existing approaches and the
proposed methods into one machine learning model to find the best feature configuration. The results of
experiments on real Internet data demonstrate that our system outperforms standard text classifiers by about 10
percent.

Keywords: Web Taxonomy Integration, Shrinkage Algorithm, Text Categorization.

1. Introduction

Web taxonomy is a hierarchical collection of classes
and documents. A number of taxonomies have been

developed for various services, such as electronic
auctions, online book stores, electronic libraries, and
search engine crawlers. Yahoo! and Google
Directories are two good examples of these
applications. Such taxonomies encourage
serendipitous searching for information, improve

 Elsevier Science 2

navigation among related topics, and enhance full-text
searching.
 Information sharing between taxonomies is
becoming an increasingly important activity on the
Internet. Google News [1] is a good example, shown
in Fig. 1, because, instead of offering news content, it
provides an algorithm that collects news articles from
various web sites and categorizes them based on its
own classification method. The value of Google news
is not necessarily the information per se, but the fact
that the integration process allows the information to
be read easily and improves access to more news
sources.

Fig 1 An example of information sharing between
taxonomies, Google News integrates other news web
site to its navigate categories.

The B2B and B2C commercial web site is another
typical applications which needs intelligent solution
for sharing information between existing structures
and personal data[2]. For example, Shopzilla1, a B2C
web site, integrates the products of many commercial
web sites into its own schema for selling purpose. For
such web sites, integrating product schemas is a
crucial process in their business service.
In this paper, to integrate web taxonomies, we select
one taxonomy as the source and another as the target,
and then transfer web pages from the source to the
target. Under this scenario, the web taxonomy
integration problem can be simplified to a document

categorization task which categorizes documents from
source to target given the source taxonomy
information. [3] Unlike standard text categorization
tasks, in web taxonomy integration, more information
can be used, such as the structure of the taxonomy
and the source class label of documents. How to
exploit such information effectively in order to
achieve more accurate categorization is a crucial issue
that has been addressed by many web taxonomy
integration approaches [3-6].

———
1 http://www.shopzilla.com/

Several approaches, such as the enhanced Naïve
Bayes classifier [3], Co-Bootstrapping [4], and SVM-
based methods [5], exploit the semantic overlap of
corresponding categories to improve the
categorization performance. The basic idea of these
approaches is that if the topics of classes A and B are
known to be very similar, then there should be a large
number of documents in A that also belong to B. For
example, if an article belongs to the Movie category
of BBC news, it probably also belongs to the Movie
category of Google news. To measure the distance
between categories, we use the cosine similarity to
determine the relationships and incorporate the
information into a discriminative machine learning
model. Another method of web taxonomy integration
uses the term vectors of neighboring categories [5] to
smooth a document’s term vector with proper weights.

However, the above approaches do not consider
the effect of the hierarchical structure, which could
provide valuable information for web taxonomy
integration. In this paper, we extend existing methods
by adding information about hierarchies. Specifically,
we apply a hierarchical shrinkage algorithm that
smoothes the term frequencies by considering the
hierarchy of the classes. We also discuss the impact
of using categories in different levels for smoothing.
For example, suppose a web page is an instance of the
professional_sport category and professional_sport
is a child of the sports category. Both categories are
this web page’s parents and can be used for
smoothing. The advantage of using an upper-level
category is that more terms can be used for smoothing,
while the advantage of using a lower-level category is
that the topic is more coherent with the web page
itself. We discuss this point in detail in Section 4.
Finally, we integrate all the proposed features with
those of previous works into one system to find the
best configuration. The results demonstrate that the
system with multiple features outperforms system
with single feature type.

 Elsevier 3

The remainder of this paper is organized as follows:
In Section 2, we discuss related works. In Section 3,
we present our approach and the machine learning
model. In Section 4, we describe our experiments,
including the dataset, experiment design, and results.
We then close the paper with some concluding
remarks in Section 5.

Root Root

Source
Taxonomy

s1 s3s2

Node

(Documents)

Class

Transfer

(Categorization)
t1

Target
Taxonomy

t2
First-Level

Fig 2 The concept of web taxonomy integration

1.1. Web taxonomy integration

We first define the web taxonomy integration process.
The concept of web taxonomy integration, illustrated
in Fig.1 [3-5], can be formulated as the assignment of
documents from a source taxonomy to a target
taxonomy. We use first-level categorizes as our
categorization targets; therefore, as evaluate the
categorization accuracy, the categorization target is
the first-level categories of the taxonomy and the
interior documents will be treated as the leaf of first
category no matter which level they located. The
terms used in this task are as follows:

A source taxonomy, S, with a set of classes,
, each of which contains a set of

documents.
ni ssss ,...,,...,, 21

A target taxonomy, T, with a set of classes,
, each of which contains a set of

documents.
mi tttt ,...,,...,, 21

For each document x in S, our task is to assign x to
the appropriate target category in T. Thus, in Figure 2,
documents from a source taxonomy are categorized
into a target taxonomy.

2. Related Work

We now introduce some existing web taxonomy
integration approaches, many of which use
information from the source taxonomy, or the
relationships between the source and target
taxonomies to enhance the categorization accuracy.
The Enhanced Naïve Bayes algorithm (ENB),
proposed by Agrawal and Srikant [3], involves two
steps. First, ENB uses a Naïve Bayes (NB) classifier
[7] to estimate the degree of overlap between the
source and target categories. For example, if the
categorization result of an NB classifier shows that
60% of the documents are categorized from class A to
class B, then the semantic overlap score between A
and B is 0.60. In the second step, ENB classifier
combines the categorization score of a NB classifier
and the score computed in the first step with a
parameter w. The formula of the ENB algorithm can
be written as follows:

() () ()
()

| |
| ,

|
i i

i
p c s p d c

p c d s
p d s

=
(1)

()
()1

(,)
|

(,)
i i

i n
j jj

c N s c
p c s

c N s c

ω

ω
=

×
=

×∑

(2)

where p(ci|d,s) denotes the probability of category ci,
given document d and source category s; p(ci|s)
denotes the probability of a document’s target class
label given its source category. The taxonomy and
p(ci|s) can be estimated by an NB classifier, i.e.,
formula two. If w is set to zero, then the
categorization result of a ENB classifier will be
exactly the same with the result of a NB classifier. In
essence, ENB measures the relationships between
categories and uses that information to enhance the
categorization result.

Ichise [8], proposed a category-based integration
method that merges similar category pairs, but it does
not categorize documents individually. The
integration performance can be enhanced by fully
exploiting the category information. The disadvantage
of this approach is that it completely ignores the
influence of specific documents and the discrepancy
between categories in the source and target
taxonomies. Sarawagi et. al. [6] use an iterative co-
training approach based on the Naïve Bayes classifier
to obtain more robust term probability distributions.
The co-training procedure can be seen as an EM

 Elsevier Science 4

algorithm. In the E-step, the documents in the source
taxonomy are labeled by initial classifiers. Then, in
the M-step, the labeled documents are used to retune
the parameters and train new classifiers.
The above approaches are based on generative model;
however, a discriminative model usually performs
better in text categorization. Hence, several works
extend web taxonomy integration to use
discriminative models. Co-Bootstrapping (Sarawagi
et. al. [6] and Zhang and Lee [4]) uses a classifier to
predict a document’s source class label and then
encodes that information as a feature in machine
learning models. This approach can be thought of as
using a classifier to measure the similarity between
two corresponding categories. The underlying ideas
of these discriminative classifier-based approaches
are similar in measuring the similarity between
classes for improving document categorization.
Another method exploits the term vector of
neighboring nodes for smoothing. For example,
suppose there is a source taxonomy instance in the
“Action movie” category and the class label of its
target taxonomy is “Movie”. In this case, it would be
reasonable to expect that other instances in “Action
movie” could provide some information that would
help categorize that instance. To this end, the cluster
shrinkage algorithm (Zhang and Lee [5]) smoothes
the word vector of a document by using the word
vectors of neighboring nodes in the same class. A
flattened hierarchy structure is used as the
information source for smoothing.
In addition to automatic integration approaches, there
are some semi-automatic integration methods, such as
QOM [9] and PROMPT [10].

3. Method

First, we introduce the features used to exploit
information in the source and target taxonomies to
enhance the categorization performance, and then
present the machine learning model used for training
and testing.

3.1. Features

3.1.1. Term Frequency (TF)
In text categorization classifiers, the term frequency
feature is usually used as the baseline system. A
distinct term frequency feature is initiated for each
term-category combination. If a term w occurs most
frequently in a category, t, we would expect the
weight corresponding to the w-t pair to be higher than
that of the term-category combination, According to
Nigam et. al. [11], in text classification, using real
numbers for the feature values to represent the
frequency achieves a better performance than only
using binary feature values to represent the
appearance of terms. For each term, w, and a category,
t’, in the target taxonomy, T, we formally define the
term frequency feature as:

()
()
()

',

0
'w ,t

N w i f t t
f x , t N

o th e r w i s e

⎧ =
⎪

= ⎨
⎪
⎩

x
x

(3)

where N(w, x) is the number of times a term w
appears in a document x, and N(x) is the number of
terms in x.

3.1.2. Shrinkage Term Frequency (STF)
In practice, the number of terms contained in a
document varies, and is relatively small compared to
that of a category. Therefore, the values of most term
frequency features will be zero. Smoothing is a
popular statistical technique used to alleviate this
problem since it provides a more robust term
frequency distribution for sparse data distribution. In
a taxonomy, a leaf (a document or an item) often have
one or more ancestor categories which can be used for
smoothing. For utilizing the hierarchy for smoothing,
we adopt the hierarchical shrinkage algorithm [7] to
smooth the terms in a document by its ancestors. The
algorithm was originally proposed for the generative
probabilistic model. In this paper, we apply it to the
discriminative model. For each word w and category t
in the target taxonomy, we define the shrinkage term
frequency (STF) feature as follows:

 Elsevier 5

()

()
()

()
()
()

L

, '
1

,

',
, , 1

0

l
l

w t l
l

N w
N

if t tN w
f t

N

otherwise

α

α β
=

⎧
+⎪

⎪
⎪ =
⎪= −⎨
⎪
⎪
⎪
⎪
⎩

∑

x
x

c
x c

c

(4
)

where N(w, x) denotes the number of times a term w
appears in x’s category t; βldenotes the interpolation
weights between levels and the sum of βl for all is
one. l denoted as the level number, for example, l
equal to 1 means the top-level and l equal to L means
the bottom-level. N(w, cl) is the number of times a
word w appears in cl, the source category in level l. α
denotes the weight that controls the strength of the
smoothing effect.

For discussing the smoothing effect result from
different levels, we apply bottom-level categories and
first-level categories in smoothing respectively. For
only using bottom-level in STF, we let βl = 0 if l ≠ L
(bottom-level) while for applying first-level for STF
let βl = 0 if l ≠ 1 (first-level).

3.1.3. Cosine Similarity
As mentioned in Section 2, using the similarity of
document terms to facilitate categorization is based
on the idea that, if the term vectors of two
corresponding categories are very similar, then more
their documents could overlap. The cosine similarity
measure is one of the most popular algorithms for
measuring the distance between documents’ term
vectors. We use the cosine similarity to measure the
distance of documents, which is then used as a feature
in our machine learning model. The cosine similarity
feature function can be written as follows:

() ()
' '

'

,
Sim ,

,
0t s

if t t s s
t s

f t s
otherwise

= =
⎧

= ⎨
⎩

'

(5)

where Sim(t,s) is the cosine similarity function used
to compute the cosine value of the term vectors of t
and s.

Like shrinkage term frequency features, for
discussing the effect of applying different levels in

cosine similarity features, we apply bottom-level
categories and first-level categories respectively.

3.1.4. Category Labels of the Source Taxonomy
(CLST)
The information in the source and the target
taxonomies can also be exploited by cross-training, as
proposed by Sarawagi et al.[6] and Zhang [4]. In the
training phase, documents in the source taxonomy are
used to train a multi-class classifier, which is then
used to tag the documents in the target taxonomy.
Next, each target taxonomy document is tagged with
a source class label to indicate the category label
feature. For each category t΄ in the target taxonomy,
and each category s΄ in the source taxonomy, we
define the CLST feature function as:

()' '

' '

,

1
,

0t s

if t t s s
f t s

otherwise

= =
⎧

= ⎨
⎩

(8)

The CLST feature allows us to measure how many
documents appear in both two categories. If most
documents of the target category t are classified into a
certain source category s, then the documents in s
may be more likely to be classified into t.

3.2. Maximum Entropy Model

To implement our approach, we use the Maximum
Entropy (ME) model [12], a statistical modeling
technique for estimating the conditional probability of
a target label based on the given information. ME
computes the probability, p(o|h), where o denotes all
possible category labels from the outcome space, and
h denotes all possible distinct features from the
feature space. In the web taxonomy integration task, h
can be viewed as all information related to the current
document that can be derived from documents in the
taxonomy, and the outcome can be viewed as the
target category label. The computation of p(o|h) in
ME depends on a set of features that are helpful for
making predictions about the outcome.

Given a set of features and a training set, the ME
estimation process produces a model, in which every
feature has a weight λif i. Following Berger [12], we
compute the conditional probability as:

 Elsevier Science 6

() () ()1| exp ,i i
i

P o h f h o
Z h

λ
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠
∑ ,

(9)

() ()exp , .i i
c i

z h f o hλ
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

∑ ∑
(10)

The probability is derived by multiplying the weights
of the active features (i.e., those fi (h,o) = 1). The
weight, λi, is estimated by a procedure called limited-
memory BFGS [13], a quasi-newton algorithm
improves the estimation of weights iteratively. The
ME estimation technique guarantees that, for every fi,
the expected value of λi will equal the empirical
expectation of λi in the training corpus.

ME has a proven competitive performance in
various tasks, including part-of-speech tagging [14],
named entity recognition [15], English parser [16],
prepositional phrase attachment [17], and text
classification [11]. As noted in [15], ME allows users
to focus on finding features that characterize the
problem, while leaving feature weight assignment to
the ME estimation routine.

Although the ME model is our choice in this paper,
other machine learning algorithms, such as Support
Vector Machine [18], Conditional Random Fields
[19], or Boosting [20], could also be used in our
approach to improve taxonomy integration. In other
words, the machine learning model is only used as a
platform to integrate various methods.

3.3. System Overview

We show the data processing flows of integrating
taxonomies in Fig 3. The document text and other
information will be sent to the feature generator to
generate feature value for the machine classifiers.
There are seven feature types in the feature generator,
including TF, hierarchical STF, bottom-level STF,
first-level STF, bottom-level cosine similarity, first-
level cosine similarity, and CLST. There are two
types of features, cosine similarity and CLST, refer to
the information of target and source taxonomy.
Therefore, there are two information flows link from
both target and source to them. Other features only
need information of source. A trained machine
learning classifier will generate the categorization

results (the category labels in target taxonomy) based
on the input features.

Fig 3 Data Processing Flows

4. Experiment & Results

In this section, we describe the data used in the
experiments and the experimental settings, followed
by an evaluation of the experimental results.

4.1. Datasets

We collected five datasets from the Google and
Yahoo! directories to evaluate our approach. Each
dataset contained a sub-taxonomy of the Google
Directory and the corresponding sub-taxonomy in the
Yahoo! Directory. In Table 1, each row shows the
dataset name, the number of links (the web pages)
within each sub-taxonomy, and the number of shared
links as they exist in both Google and Yahoo!
directories.
Shared links were identified by their URLs and used
as test data, while the remaining links were used as
training data. Only a small number of links are shared
by the two web taxonomies.

Table 1. The Datasets

 Elsevier 7

 Google Directory # of
links

of
classes

Yahoo! Directory # of
links

of
classes

of
Shared

links
Books Shopping/

Publications/
Books/

5544 42 Business_and_economy
/shopping_and_services
/books/

7348 39 626

Music Top/Arts/
Music/Styles

9903 50 Entertainment/Music/
Genres

1787 25 1308

Garden Shopping/Home
_and_Garden

10048 37 Business_and_economy
/shopping_and_services
/home_and_garden/

2912 18 601

Outdoor Top/Recreation/
Outdoors/

10137 37 Recreation/Outdoors 5009 65 853

Finance Business/
Financial_Services

10446 43 Business and Economy
Business_to_Business/
Financial_Services

3016 20 946

Travel Top/Recreation/
Travel/
Specialty_Travel/

9421 50 Recreation/Travel 6864 49 1981

Total # 55499 259 33251 216 6315
In the Google and Yahoo! directories, each instance
(document) contains the web page’s title, URL, and
description, as shown by the following example:

Title: Spider-Man 3

Snippet: Official site for the motion picture.

Link: ww.sonypictures.com/movies/spiderman3/site/
Fig 4 Google Directory page and the Information of
an instance.

We used the titles and snippets for experiment. All
documents were pre-processed by removing the stop
words and stemming.

4.2. Experiment design and setting

We use the documents from Yahoo! (excluding the
shared links) for training and categorize documents
from Google into Yahoo! and vice versa.
We define the classification accuracy as follows:

#of documentscorrectlyclassifiedAcc.=
#of documents

In the NB and ENB experiments, we implement
the NB and ENB modules. The parameter w with the
best performance in formula 2 of ENB is selected
from a series of numbers: {0, 1, 3, 10, 30, 100, 300,
and 1,000}, and the smoothing parameter [3] of the
NB and ENB classifier is set to 0.1. We use the
Maximum Entropy Toolkit [21] to implement the
ME-based approaches. To compare our approach with
normal text classification methods, we implement the
ME-based text classification algorithm proposed in
[11]. The parameter α used in the shrinkage-term
frequency (STF) is set to 0.5 and β, another parameter
in STF, is trained by randomly selecting one-tenth of
the documents of the test dataset.

 Elsevier Science 8

4.3. Experiment Results

Table 2 Experiment results of Naïve Bayes, Enhanced
Naïve Bayes, Maximum entropy text classifier (ME-
Basic), and our approach using the best feature
configuration (ME-Best).

 NB ENB ME-
Basic

ME-
Best

Books 36.22 58.20 60.12 75.05
Music 17.38 32.10 62.19 79.26
Garden 54.79 70.7 82.30 87.17
Outdoor 39.38 60.62 71.54 76.90
Finance 37.25 46.63 72.32 75.47
Travel 29.15 35.90 73.17 82.92

G to
Y

Average 35.69 50.69 70.27 79.46
Books 34.79 49.78 53.18 67.37
Music 34.25 41.76 46.30 68.45
Garden 55.87 60.88 71.18 76.35
Outdoor 50.81 66.08 68.8 75.26
Finance 32.29 35.41 58.64 66.67
Travel 40.35 38.17 67.32 70.29

Y to
G

Average 41.39 48.68 60.90 70.73

We implement ME-Basic following Nigam et. al.’s
work[11] using TF feature in ME. ME-basic can
provide the performance of an ordinary text classifier
without any taxonomy integration features. We
implement ME-basic ME-Best uses the best feature
configuration set, including TF, STF, and cosine
similarity. From the results listed in Table 2, we
observe that ME-Best outperforms the other three
approaches. In comparison of ME-Best and ME-Text,
we can observe that the improvement brought by our
designed features for taxonomy integration is
significant about 10%. The improvement of ME-Best
over NB is almost 45% percent. This improvement is
not only brought by the extra features used by ME-
Best, but also affected by the intrinsic difference
between the NB and ME models.

Table 3. Experimental results of the shrinkage
algorithms. STF first-level only uses first level
categories for smoothing, while STF bottom-level
only uses categories in the bottom-level. Hierarchy
STF integrates the categories of all levels with
different weights.

 ME
Basi
c

STF
First
-
Level

STF
Bottom
-Level

Hierarch
y
STF

Books 60.12 60.12 67.89 69.12
Music 62.19 62.80 71.34 72.12
Garden 82.30 84.87 85.89 85.34
Outdoor 71.54 71.2 74.3 76.29
Finance 72.32 67.92 71.06 71.37
Travel 73.17 74.39 79.26 84.12

G
t
o
Y

Averag
e

70.27 70.22 74.96 76.39

Books 53.18 54.16 57.91 58.08
Music 46.30 53.02 58.38 64.42
Garden 71.18 72.41 77.09 76.79
Outdoor 68.8 69.39 74.67 73.4
Finance 58.64 60.49 66.67 64.02
Travel 67.32 63.36 71.28 71.28

Y
t
o
G

Averag
e

60.90 62.14 67.67 67.99

In Table 3, in comparison of the ME-Basic results and
those of other models using STF features, we can see
that using STF-Bottom-level and Hierarchy-STF
increases the classification accuracy by at least 4%.
This finding suggests that smoothing with ancestor
categories term vectors could provide valuable
information for assigning documents.

The results in the second and third columns of
Table 3 show that bottom-level STF outperforms the
first-level. The topics of two corresponding categories
in directories are not always exactly the same. In fact,
topics often only overlap partially. This result can
show that although upper-level categories provide
more terms for smoothing, the classification
performance is undermined because the topics that the
terms represent are often too general. In contrast, the
terms in the bottom-level are more coherent, so they
are better for smoothing than upper-levels.

Hierarchical STF achieves the best performance
between using different levels STF. The parameter β,
the interpolation weights between different level

 Elsevier 9

categories, can successful enhance the utility of terms
in levels for smoothing.

Table 4. The results of using the cosine similarity
feature. Cosine similarity first-level uses the cosine
value between the first-level categories as a feature,
while Cosine similarity bottom-level uses bottom-
level categories.

 ME
Basic

Cosine
Similarity
First-Level

Cosine
Similarity
Bottom-
Level

Books 60.12 70.55 71.78
Music 62.19 70.73 71.95
Garden 82.30 85.12 85.79
Outdoor 71.54 77.07 75.93
Finance 72.32 73.58 77.98
Travel 73.17 76.82 74.39

G
to
Y

Average 70.27 75.65 76.30
Books 53.18 62.97 66.23
Music 46.30 65.10 64.42
Garden 71.18 71.67 75.61
Outdoor 68.8 72.23 74.23
Finance 58.64 67.28 69.75
Travel 67.32 63.36 65.34

Y
to
G

Average 60.90 67.10 69.26

Table 4 shows the results of using cosine similarity
features. Both the cosine similarity first-level and the
bottom-level features outperform ME-Basic for all
categories.

In the Cosine similarity First-Level configuration,
we only use the cosine similarity values between the
first–level source categories and their corresponding
target categories as features, while in the Cosine
similarity Bottom-Level, we use the bottom-level
categories. The results show that using the similarity
between the bottom-level source categories and target
categories as features is more effective than using the
first-level categories. These results are similar to
those in Table 3 that using the bottom-level yields
better results than the top-level.

Table 5 Experiment results using predicted category
label features

 ME-Basic CLST
Books 60.12 67.08
Music 62.19 71.95
Garden 82.30 86.15
Outdoor 71.54 76.1
Finance 72.32 69.25

G to Y

Travel 73.17 78.04
 Average 70.27 74.76

Books 53.18 60.03
Music 46.30 51.67
Garden 71.18 71.92
Outdoor 68.8 71.15
Finance 58.64 71.69
Travel 67.32 67.32

Y to G

Average 60.90 65.63

Table 5 shows the results of using category label
features for classification. Compared with ME-Basic,
the average improvement of applying category label
features is about 4~5%. Both category label features
and ENB initially use a classifier to measure how
many documents appear in both categories in the
source and target taxonomies. Like the ENB result,
this result shows that measuring the document overlap
between categories provides useful information for
web taxonomy integration.

 Elsevier Science 10

Table 6. The results of different feature configurations

 Books Music Garden Outdoor Finance Travel Average
Basic (Term Frequency) 60.12 62.19 82.30 71.54 72.32 73.17 70.27
+Hierarchical
Shrinkage (STF)

69.12 70.12 85.34 76.29 71.37 84.12 76.39

+Cosine Similarity
Bottom-Level

75.05 79.26 87.17 76.90 75.47 82.92 79.46

G to Y

+Category Label 73.82 75.0 85.64 76.45 72.95 76.82 76.78
Basic (Term Frequency) 53.18 46.30 71.18 68.8 58.64 67.32 60.90
+Hierarchical
Shrinkage (STF)

58.08 64.42 76.79 73.4 64.02 71.28 67.99

+Cosine Similarity
Bottom-Level

67.37 68.45 76.35 75.26 66.67 70.29 70.73

Y to G

+Category Label 67.70 68.45 75.37 75.40 63.58 66.33 69.47
Table 6 details the results of different feature
configuration sets and the cumulative performance of
the features listed in the second column. The ”+” sign
following a feature name indicates that the feature is
added incrementally. The performance of each row is
contributed by the feature name of that row and the
features showing above. With the baseline feature, TF,
we add the STF feature, cosine similarity bottom-
level feature, and CLST feature incrementally.
Adding hierarchy shrinkage and cosine similarity
features improves the accuracy by almost 10%.
Nevertheless, the accuracies are not improved on all
datasets after adding category label features. The
cosine similarity relies on term vectors; meanwhile,
the category labels rely on the predicted category
labels which are also decided by term vectors.
Therefore, the information used by these two features
is duplicated. For example, if all the documents in a
category of the target taxonomy are tagged as one
specific category of the source taxonomy, then it
would be reasonable to assume that their term vectors
would also have a high cosine value.

80

The result of integrating the best feature set is
better than single feature. This demonstrates that each
feature uses different types of information and makes
distinct contribution to the categorization
performance. Finally, we list the performance of each
feature and their combinations in Fig 5.

G->Y Y->G
0

10

20

30

40

50

60

NB
ENB70
ME-Basic
STF First-Level
STF Bottom-Level
Hierarchy STF
Cos. Sim.
First-Level

A
ve

ra
ge

 A
cc

.

Cos.Sim.
Bottom-Level
Category Label
ME-Best

Fig 5 The average accuracy of features and their
configurations.

5. Conclusion

We have proposed an approach that uses two types of
information referred to source taxonomies to improve
taxonomy integration. Unlike previous works, which
only consider a flattened hierarchy as the information
source, we use a hierarchical shrinkage algorithm to
smooth the term vector of a child document by its
ancestor’s category. Another approach is using
category information, the semantic relationships
between categories. To obtain category information,
we not only implement the previous approaches that
use predicted class labels, but also propose a feature

 Elsevier 11

with better performance that uses the cosine similarity
to measure the semantic relationships between
categories. Finally, we integrate previous and our
proposed features into one model, and then select the
best configuration for classification

For evaluating the feasibility to real applications,
the proposed approach was tested using real Internet
data. The experiment results show that our model,
which incorporates source taxonomy as its features,
outperforms the baseline system that only uses term
frequency of documents in the target taxonomy to
train classifiers. The results also demonstrate that
lower-level categories provide more precise
information than upper-level categories for shrinkage
algorithm.

In the future, more information, such as web
resources, a third taxonomy, or existing taxonomies
could be incorporated into our approach. It is also
interesting to assess whether the proposed approach
could be used in other applications, especially the real
internet applications.

References

[1] "Google News http://news.google.com/."
[2] D. Fensel, Y. Ding, B. Omelayenko, E. Schulten, G. Botquin,

M. Brown, and A. Flett, "Product data integration in
B2B e-commerce," Intelligent Systems, IEEE, vol. 16,
pp. 54- 59, 2001.

[3] R. Agrawal and R. Srikant, "On Integrating Catalogs,"
Proceedings of the Tenth International Conference on
World Wide Web, pp. 603 - 612, 2001.

[4] D. Zhang and W. S. Lee, "Machine Learning for IR: Web
Taxonomy Integration through Co-bootstrapping,"
Proceedings of the 27th Annual International
Conference on Research and Development in
Information Retrieval pp. 410 - 417 2004.

[5] D. Zhang and W. S. Lee, "Web Taxonomy Integration Using
Support Vector Machines," Proceedings of the
Thirteenth International Conference on World Wide
Web, pp. 472 - 481, 2004.

[6] S. Sarawagi, S. Chakrabarti, and S. Godbole, "Cross-Training:
Learning Probabilistic Mappings between Topics.,"
presented at Proceedings of the Ninth ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, 2003.

[7] A. McCallum, R. Rosenfeld, T. M. Mitchell, and A. Y. Ng,
"Improving Text Classification by Shrinkage in a
Hierarchy of Classes," Proceedings of the Fifteenth
International Conference on Machine Learning, pp. 359
- 367 1998.

[8] R. Ichise, H. Takeda, and S. Honiden, "Integrating Multiple
Internet Directories by Instance-Based Learning,"
presented at International Joint Conference on Artificial
Intelligence, 2003.

[9] M. Ehrig and S. Staab, "QOM - Quick Ontology Mapping,"
presented at International Semantic Web Conference,
2004.

[10] N. F. Noy and M. A. Musen, "PROMPT: Algorithm and Tool
for Automated Ontology Merging and Alignment,"
Proceedings of the Seventeenth National Conference on
Artificial Intelligence, 2000.

[11] K. Nigam, J. Lafferty, and A. McCallum, "Using Maximum
Entropy for Text Classification," presented at In IJCAI-
99 Workshop on Machine Learning for Information
Filtering, 1999.

[12] A. Berger, S. A. D. Pietra, and V. J. D. Pietra, "A Maximum
Entropy Approach to Natural Language Processing,"
Computer Linguistic, vol. 22, pp. 39-71, 1996.

[13] D. C. Liu and J. Nocedal, "On The Limited Memory Bfgs
Method For Large Scale Optimization," Math.
Programming, vol. 45, pp. 503 - 528, 1989.

[14] A. Ratnaparkhi, "A Maximum Entropy Model for Part-Of-
Speech Tagging," Proceedings of the Conference on
Empirical Methods in Natural Language Processing, pp.
133-142, 1996.

[15] A. Borthwick, " A Maximum Entropy Approach to Named
Entity Recognition," New York University, 1999.

[16] E. Charniak, "A Maximum-Entropy-Inspired Parser,"
Proceedings of the First Conference on North American
Chapter of the Association for Computational
Linguistics, pp. 132 - 139, 2000.

[17] A. Ratnaparkhi, "Statistical Models for Unsupervised
Prepositional Phrase Attachment," Proceedings of the
Thirty-sixth Conference on Association for
Computational Linguistics, vol. 2, pp. 1079 - 1085 1998.

[18] T. Joachims, "Text Categorization with Suport Vector
Machines: Learning with Many Relevant Features,"
Proceeding of Tenth European Conference on Machine
Learning, pp. 137-142, 1998.

[19] J. Lafferty, A. McCallum, and F. Pereira, "Conditional
Random Fields: Probabilistic Models for Segmenting
and Labeling Sequence Data," presented at Proceeding

http://news.google.com/.

 Elsevier Science 12

Eighteenth International Conference on Machine
Learning, 2001.

[20] R. E. Schapire and Y. Singer, "BoosTexter: A Boosting-based
System for Text Categorization," Machine Learning, vol.
39, pp. 135-168 2000.

[21] Z. Le, "Maximum Entropy Toolkit."

