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Abstract 

We address the problem of integrating web taxonomies from different real Internet applications. Integrating web 
taxonomies is to transfer instances from a source to target taxonomy. Unlike the conventional text categorization 
problem, in taxonomy integration, the source taxonomy contains extra information that can be used to improve 
the categorization. The major existing methods can be divided in two types: those that use neighboring categories 
to smooth the document term vector and those that consider the semantic relationship between corresponding 
categories of the target and source taxonomies to facilitate categorization. In contrast to the first type of approach, 
which only uses a flattened hierarchy for smoothing, we apply a hierarchy shrinkage algorithm to smooth child 
documents by their parents. We also discuss the effect of using different hierarchical levels for smoothing. To 
extend the second type of approach, we extract fine-grain semantic relationships, which consider the relationships 
between lower-level categories. In addition, we use the cosine similarity to measure the semantic relationships, 
which achieves better performance than existing methods. Finally, we integrate the existing approaches and the 
proposed methods into one machine learning model to find the best feature configuration. The results of 
experiments on real Internet data demonstrate that our system outperforms standard text classifiers by about 10 
percent. 

Keywords: Web Taxonomy Integration, Shrinkage Algorithm, Text Categorization.   

1. Introduction 

Web taxonomy is a hierarchical collection of classes 
and documents. A number of taxonomies have been 

developed for various services, such as electronic 
auctions, online book stores, electronic libraries, and 
search engine crawlers. Yahoo! and Google 
Directories are two good examples of these 
applications. Such taxonomies encourage 
serendipitous searching for information, improve 
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navigation among related topics, and enhance full-text 
searching.  
 Information sharing between taxonomies is 
becoming an increasingly important activity on the 
Internet. Google News [1] is a good example, shown 
in Fig. 1, because, instead of offering news content, it 
provides an algorithm that collects news articles from 
various web sites and categorizes them based on its 
own classification method. The value of Google news 
is not necessarily the information per se, but the fact 
that the integration process allows the information to 
be read easily and improves access to more news 
sources.  

 
Fig 1 An example of information sharing between 
taxonomies, Google News integrates other news web 
site to its navigate categories. 

The B2B and B2C commercial web site is another 
typical applications which needs intelligent solution 
for sharing information between existing structures 
and personal data[2]. For example, Shopzilla1, a B2C 
web site, integrates the products of many commercial 
web sites into its own schema for selling purpose. For 
such web sites, integrating product schemas is a 
crucial process in their business service. 
In this paper, to integrate web taxonomies, we select 
one taxonomy as the source and another as the target, 
and then transfer web pages from the source to the 
target. Under this scenario, the web taxonomy 
integration problem can be simplified to a document 

categorization task which categorizes documents from 
source to target given the source taxonomy 
information. [3] Unlike standard text categorization 
tasks, in web taxonomy integration, more information 
can be used, such as the structure of the taxonomy 
and the source class label of documents. How to 
exploit such information effectively in order to 
achieve more accurate categorization is a crucial issue 
that has been addressed by many web taxonomy 
integration approaches [3-6]. 

——— 
1 http://www.shopzilla.com/ 

Several approaches, such as the enhanced Naïve 
Bayes classifier [3], Co-Bootstrapping [4], and SVM-
based methods [5], exploit the semantic overlap of 
corresponding categories to improve the 
categorization performance. The basic idea of these 
approaches is that if the topics of classes A and B are 
known to be very similar, then there should be a large 
number of documents in A that also belong to B. For 
example, if an article belongs to the Movie category 
of BBC news, it probably also belongs to the Movie 
category of Google news. To measure the distance 
between categories, we use the cosine similarity to 
determine the relationships and incorporate the 
information into a discriminative machine learning 
model. Another method of web taxonomy integration 
uses the term vectors of neighboring categories [5] to 
smooth a document’s term vector with proper weights. 

However, the above approaches do not consider 
the effect of the hierarchical structure, which could 
provide valuable information for web taxonomy 
integration. In this paper, we extend existing methods 
by adding information about hierarchies. Specifically, 
we apply a hierarchical shrinkage algorithm that 
smoothes the term frequencies by considering the 
hierarchy of the classes. We also discuss the impact 
of using categories in different levels for smoothing. 
For example, suppose a web page is an instance of the 
professional_sport category and professional_sport 
is a child of the sports category. Both categories are 
this web page’s parents and can be used for 
smoothing.  The advantage of using an upper-level 
category is that more terms can be used for smoothing, 
while the advantage of using a lower-level category is 
that the topic is more coherent with the web page 
itself. We discuss this point in detail in Section 4. 
Finally, we integrate all the proposed features with 
those of previous works into one system to find the 
best configuration. The results demonstrate that the 
system with multiple features outperforms system 
with single feature type. 
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The remainder of this paper is organized as follows: 
In Section 2, we discuss related works. In Section 3, 
we present our approach and the machine learning 
model. In Section 4, we describe our experiments, 
including the dataset, experiment design, and results. 
We then close the paper with some concluding 
remarks in Section 5. 
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Fig 2 The concept of web taxonomy integration 

1.1. Web taxonomy integration 

We first define the web taxonomy integration process. 
The concept of web taxonomy integration, illustrated 
in Fig.1 [3-5], can be formulated as the assignment of 
documents from a source taxonomy to a target 
taxonomy. We use first-level categorizes as our 
categorization targets; therefore, as evaluate the 
categorization accuracy, the categorization target is 
the first-level categories of the taxonomy and the 
interior documents will be treated as the leaf of first 
category no matter which level they located. The 
terms used in this task are as follows: 

A source taxonomy, S, with a set of classes, 
, each of which contains a set of 

documents.  
ni ssss ,...,,...,, 21

A target taxonomy, T, with a set of classes, 
, each of which contains a set of 

documents. 
mi tttt ,...,,...,, 21

For each document x in S, our task is to assign x to 
the appropriate target category in T. Thus, in Figure 2, 
documents from a source taxonomy are categorized 
into a target taxonomy.  

2. Related Work 

We now introduce some existing web taxonomy 
integration approaches, many of which use 
information from the source taxonomy, or the 
relationships between the source and target 
taxonomies to enhance the categorization accuracy. 
The Enhanced Naïve Bayes algorithm (ENB), 
proposed by Agrawal and Srikant [3], involves two 
steps. First, ENB uses a Naïve Bayes (NB) classifier 
[7] to estimate the degree of overlap between the 
source and target categories. For example, if the 
categorization result of an NB classifier shows that 
60% of the documents are categorized from class A to 
class B, then the semantic overlap score between A 
and B is 0.60.  In the second step, ENB classifier 
combines the categorization score of a NB classifier 
and the score computed in the first step with a 
parameter w. The formula of the ENB algorithm can 
be written as follows:  
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where p(ci|d,s) denotes the probability of category ci,  
given document d and source category s; p(ci|s) 
denotes the probability of a document’s target class 
label given its source category. The taxonomy and 
p(ci|s) can be estimated by an NB classifier, i.e., 
formula two. If w is set to zero, then the 
categorization result of a ENB classifier will be 
exactly the same with the result of a NB classifier. In 
essence, ENB measures the relationships between 
categories and uses that information to enhance the 
categorization result. 

Ichise [8], proposed a category-based integration 
method that merges similar category pairs, but it does 
not categorize documents individually. The 
integration performance can be enhanced by fully 
exploiting the category information. The disadvantage 
of this approach is that it completely ignores the 
influence of specific documents and the discrepancy 
between categories in the source and target 
taxonomies. Sarawagi et. al. [6] use an iterative co-
training approach based on the Naïve Bayes classifier 
to obtain more robust term probability distributions. 
The co-training procedure can be seen as an EM 
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algorithm. In the E-step, the documents in the source 
taxonomy are labeled by initial classifiers. Then, in 
the M-step, the labeled documents are used to retune 
the parameters and train new classifiers.  
The above approaches are based on generative model; 
however, a discriminative model usually performs 
better in text categorization. Hence, several works 
extend web taxonomy integration to use 
discriminative models. Co-Bootstrapping (Sarawagi 
et. al. [6] and Zhang and Lee [4]) uses a classifier to 
predict a document’s source class label and then 
encodes that information as a feature in machine 
learning models. This approach can be thought of as 
using a classifier to measure the similarity between 
two corresponding categories. The underlying ideas 
of these discriminative classifier-based approaches 
are similar in measuring the similarity between 
classes for improving document categorization.  
Another method exploits the term vector of 
neighboring nodes for smoothing. For example, 
suppose there is a source taxonomy instance in the 
“Action movie” category and the class label of its 
target taxonomy is “Movie”. In this case, it would be 
reasonable to expect that other instances in “Action 
movie” could provide some information that would 
help categorize that instance. To this end, the cluster 
shrinkage algorithm (Zhang and Lee [5]) smoothes 
the word vector of a document by using the word 
vectors of neighboring nodes in the same class. A 
flattened hierarchy structure is used as the 
information source for smoothing.  
In addition to automatic integration approaches, there 
are some semi-automatic integration methods, such as 
QOM [9] and PROMPT [10].  

3. Method 

First, we introduce the features used to exploit 
information in the source and target taxonomies to 
enhance the categorization performance, and then 
present the machine learning model used for training 
and testing. 

3.1. Features 

3.1.1. Term Frequency (TF) 
In text categorization classifiers, the term frequency 
feature is usually used as the baseline system. A 
distinct term frequency feature is initiated for each 
term-category combination. If a term w occurs most 
frequently in a category, t, we would expect the 
weight corresponding to the w-t pair to be higher than 
that of the term-category combination, According to 
Nigam et. al. [11], in text classification, using real 
numbers for the feature values to represent the 
frequency achieves a better performance than only 
using binary feature values to represent the 
appearance of terms. For each term, w, and a category, 
t’, in the target taxonomy, T, we formally define the 
term frequency feature as: 
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where N(w, x) is the number of times a term w 
appears in a document x, and N(x) is the number of 
terms in x. 

3.1.2. Shrinkage Term Frequency (STF) 
In practice, the number of terms contained in a 
document varies, and is relatively small compared to 
that of a category. Therefore, the values of most term 
frequency features will be zero. Smoothing is a 
popular statistical technique used to alleviate this 
problem since it provides a more robust term 
frequency distribution for sparse data distribution. In 
a taxonomy, a leaf (a document or an item) often have 
one or more ancestor categories which can be used for 
smoothing. For utilizing the hierarchy for smoothing, 
we adopt the hierarchical shrinkage algorithm [7] to 
smooth the terms in a document by its ancestors. The 
algorithm was originally proposed for the generative 
probabilistic model. In this paper, we apply it to the 
discriminative model. For each word w and category t 
in the target taxonomy, we define the shrinkage term 
frequency (STF) feature as follows:  
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where N(w, x) denotes the number of times a term w 
appears in x’s category t; βldenotes the interpolation 
weights between levels and the sum of  βl for all is 
one.  l denoted as the level number, for example, l 
equal to 1 means the top-level and l equal to L means 
the bottom-level.  N(w, cl) is the number of times a 
word w appears in cl, the source category in level l. α
denotes the weight that controls the strength of the 
smoothing effect. 

For discussing the smoothing effect result from 
different levels, we apply bottom-level categories and 
first-level categories in smoothing respectively. For 
only using bottom-level in STF, we let βl = 0 if l ≠ L 
(bottom-level) while for applying first-level for STF 
let βl = 0 if l ≠ 1 (first-level).  

3.1.3. Cosine Similarity 
As mentioned in Section 2, using the similarity of 
document terms to facilitate categorization is based 
on the idea that, if the term vectors of two 
corresponding categories are very similar, then more 
their documents could overlap. The cosine similarity 
measure is one of the most popular algorithms for 
measuring the distance between documents’ term 
vectors. We use the cosine similarity to measure the 
distance of documents, which is then used as a feature 
in our machine learning model. The cosine similarity 
feature function can be written as follows: 
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where Sim(t,s) is the cosine similarity function used 
to compute the cosine value of the term vectors of t 
and s. 

Like shrinkage term frequency features, for 
discussing the effect of applying different levels in 

cosine similarity features, we apply bottom-level 
categories and first-level categories respectively.  

3.1.4. Category Labels of the Source Taxonomy 
(CLST) 
The information in the source and the target 
taxonomies can also be exploited by cross-training, as 
proposed by Sarawagi et al.[6] and Zhang [4]. In the 
training phase, documents in the source taxonomy are 
used to train a multi-class classifier, which is then 
used to tag the documents in the target taxonomy. 
Next, each target taxonomy document is tagged with 
a source class label to indicate the category label 
feature. For each category t΄ in the target taxonomy, 
and each category s΄ in the source taxonomy, we 
define the CLST feature function as: 
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The CLST feature allows us to measure how many 
documents appear in both two categories. If most 
documents of the target category t are classified into a 
certain source category s, then the documents in s 
may be more likely to be classified into t.    

3.2. Maximum Entropy Model 

To implement our approach, we use the Maximum 
Entropy (ME) model [12], a statistical modeling 
technique for estimating the conditional probability of 
a target label based on the given information. ME 
computes the probability, p(o|h), where o denotes all 
possible category labels from the outcome space, and 
h denotes all possible distinct features from the 
feature space. In the web taxonomy integration task, h 
can be viewed as all information related to the current 
document that can be derived from documents in the 
taxonomy, and the outcome can be viewed as the 
target category label. The computation of p(o|h) in 
ME depends on a set of features that are  helpful for 
making predictions about the outcome. 

Given a set of features and a training set, the ME 
estimation process produces a model, in which every 
feature  has a weight λif i. Following Berger [12], we 
compute the conditional probability as: 
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The probability is derived by multiplying the weights 
of the active features (i.e., those fi (h,o) = 1). The 
weight, λi, is estimated by a procedure called limited-
memory BFGS [13], a quasi-newton algorithm 
improves the estimation of weights iteratively. The 
ME estimation technique guarantees that, for every fi, 
the expected value of λi will equal the empirical 
expectation of λi in the training corpus. 

ME has a proven competitive performance in 
various tasks, including part-of-speech tagging [14], 
named entity recognition [15], English parser [16], 
prepositional phrase attachment [17], and text 
classification [11]. As noted in [15], ME allows users 
to focus on finding features that characterize the 
problem, while leaving feature weight assignment to 
the ME estimation routine.  

Although the ME model is our choice in this paper, 
other machine learning algorithms, such as Support 
Vector Machine [18], Conditional Random Fields 
[19], or Boosting [20], could also be used in our 
approach to improve taxonomy integration. In other 
words, the machine learning model is only used as a 
platform to integrate various methods. 

3.3. System Overview 

We show the data processing flows of integrating 
taxonomies in Fig 3. The document text and other 
information will be sent to the feature generator to 
generate feature value for the machine classifiers. 
There are seven feature types in the feature generator, 
including TF, hierarchical STF, bottom-level STF, 
first-level STF, bottom-level cosine similarity, first-
level cosine similarity, and CLST. There are two 
types of features, cosine similarity and CLST, refer to 
the information of target and source taxonomy. 
Therefore, there are two information flows link from 
both target and source to them. Other features only 
need information of source. A trained machine 
learning classifier will generate the categorization 

results (the category labels in target taxonomy) based 
on the input features. 

 
Fig 3 Data Processing Flows 

4. Experiment & Results 

In this section, we describe the data used in the 
experiments and the experimental settings, followed 
by an evaluation of the experimental results.  

4.1. Datasets 

We collected five datasets from the Google and 
Yahoo! directories to evaluate our approach. Each 
dataset contained a sub-taxonomy of the Google 
Directory and the corresponding sub-taxonomy in the 
Yahoo! Directory. In Table 1, each row shows the 
dataset name, the number of links (the web pages) 
within each sub-taxonomy, and the number of shared 
links as they exist in both Google and Yahoo! 
directories. 
Shared links were identified by their URLs and used 
as test data, while the remaining links were used as 
training data. Only a small number of links are shared 
by the two web taxonomies. 
 
 

Table 1. The Datasets 
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 Google Directory # of 
links 

# of 
classes

Yahoo! Directory # of 
links 

# of 
classes 

# of 
Shared 

links 
Books Shopping/ 

Publications/ 
Books/ 

5544 42 Business_and_economy
/shopping_and_services
/books/ 

7348 39 626 

Music Top/Arts/ 
Music/Styles 

9903 50 Entertainment/Music/ 
Genres 

1787 25 1308 

Garden Shopping/Home 
_and_Garden 

10048 37 Business_and_economy
/shopping_and_services
/home_and_garden/ 

2912 18 601 

Outdoor Top/Recreation/ 
Outdoors/ 

10137 37 Recreation/Outdoors 5009 65 853 

Finance Business/ 
Financial_Services 

10446 43 Business and Economy
Business_to_Business/ 
Financial_Services  

3016 20 946 

Travel Top/Recreation/ 
Travel/ 
Specialty_Travel/ 

9421 50 Recreation/Travel 6864 49 1981 

Total #  55499 259  33251 216 6315  
In the Google and Yahoo! directories, each instance 
(document) contains the web page’s title, URL, and 
description, as shown by the following example:  

 
Title: Spider-Man 3

Snippet: Official site for the motion picture. 

Link: ww.sonypictures.com/movies/spiderman3/site/
Fig 4 Google Directory page and the Information of 
an instance. 
 

We used the titles and snippets for experiment. All 
documents were pre-processed by removing the stop 
words and stemming. 

4.2. Experiment design and setting 

We use the documents from Yahoo! (excluding the 
shared links) for training and categorize documents 
from Google into Yahoo! and vice versa. 
We define the classification accuracy as follows:  

#of documentscorrectlyclassifiedAcc.=
#of documents

 

In the NB and ENB experiments, we implement 
the NB and ENB modules. The parameter w with the 
best performance in formula 2 of ENB is selected 
from a series of numbers: {0, 1, 3, 10, 30, 100, 300, 
and 1,000}, and the smoothing parameter [3] of the 
NB and ENB classifier is set to 0.1. We use the 
Maximum Entropy Toolkit [21] to implement the 
ME-based approaches. To compare our approach with 
normal text classification methods, we implement the 
ME-based text classification algorithm proposed in 
[11]. The parameter α used in the shrinkage-term 
frequency (STF) is set to 0.5 and β, another parameter 
in STF, is trained by randomly selecting one-tenth of 
the documents of the test dataset.  
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4.3. Experiment Results 

Table 2 Experiment results of Naïve Bayes, Enhanced 
Naïve Bayes, Maximum entropy text classifier (ME-
Basic), and our approach using the best feature 
configuration (ME-Best).  

 NB ENB ME-
Basic 

ME-
Best 

Books 36.22 58.20 60.12 75.05 
Music 17.38 32.10 62.19 79.26 
Garden 54.79 70.7 82.30 87.17 
Outdoor 39.38 60.62 71.54 76.90 
Finance 37.25 46.63 72.32 75.47 
Travel 29.15 35.90 73.17 82.92 

G to 
Y 

Average 35.69 50.69 70.27 79.46 
Books 34.79 49.78 53.18 67.37 
Music 34.25 41.76 46.30 68.45 
Garden 55.87 60.88 71.18 76.35 
Outdoor 50.81 66.08 68.8 75.26 
Finance 32.29 35.41 58.64 66.67 
Travel 40.35 38.17 67.32 70.29 

Y to 
G 

Average 41.39  48.68  60.90  70.73  
 

We implement ME-Basic following Nigam et. al.’s 
work[11] using TF feature in ME. ME-basic can 
provide the performance of an ordinary text classifier 
without any taxonomy integration features.  We 
implement ME-basic ME-Best uses the best feature 
configuration set, including TF, STF, and cosine 
similarity. From the results listed in Table 2, we 
observe that ME-Best outperforms the other three 
approaches. In comparison of ME-Best and ME-Text, 
we can observe that the improvement brought by our 
designed features for taxonomy integration is 
significant about 10%. The improvement of ME-Best 
over NB is almost 45% percent. This improvement is 
not only brought by the extra features used by ME-
Best, but also affected by the intrinsic difference 
between the NB and ME models.  

Table 3. Experimental results of the shrinkage 
algorithms. STF first-level only uses first level 
categories for smoothing, while STF bottom-level 
only uses categories in the bottom-level. Hierarchy 
STF integrates the categories of all levels with 
different weights. 

 ME 
Basi
c 

STF 
First
-
Level 

STF 
Bottom
-Level 

Hierarch
y 
STF 

Books 60.12 60.12 67.89 69.12 
Music 62.19 62.80 71.34 72.12 
Garden 82.30 84.87 85.89 85.34 
Outdoor 71.54 71.2 74.3 76.29 
Finance 72.32 67.92 71.06 71.37 
Travel 73.17 74.39 79.26 84.12 

G 
t
o 
Y

Averag
e 

70.27 70.22  74.96  76.39  

Books 53.18 54.16 57.91 58.08 
Music 46.30 53.02 58.38 64.42 
Garden 71.18 72.41 77.09 76.79 
Outdoor 68.8 69.39 74.67 73.4 
Finance 58.64 60.49 66.67 64.02 
Travel 67.32 63.36 71.28 71.28 

Y 
t
o 
G

Averag
e 

60.90 62.14  67.67  67.99  

 
In Table 3, in comparison of the ME-Basic results and 
those of other models using STF features, we can see 
that using STF-Bottom-level and Hierarchy-STF 
increases the classification accuracy by at least 4%. 
This finding suggests that smoothing with ancestor 
categories term vectors could provide valuable 
information for assigning documents.  

The results in the second and third columns of 
Table 3 show that bottom-level STF outperforms the 
first-level. The topics of two corresponding categories 
in directories are not always exactly the same. In fact, 
topics often only overlap partially. This result can 
show that although upper-level categories provide 
more terms for smoothing, the classification 
performance is undermined because the topics that the 
terms represent are often too general. In contrast, the 
terms in the bottom-level are more coherent, so they 
are better for smoothing than upper-levels.  

Hierarchical STF achieves the best performance 
between using different levels STF. The parameter β, 
the interpolation weights between different level 
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categories, can successful enhance the utility of terms    
in levels for smoothing.  

Table 4. The results of using the cosine similarity 
feature. Cosine similarity first-level uses the cosine 
value between the first-level categories as a feature, 
while Cosine similarity bottom-level uses bottom-
level categories.  

 ME 
Basic 

Cosine 
Similarity 
First-Level 

Cosine 
Similarity 
Bottom-
Level 

Books 60.12 70.55 71.78 
Music 62.19 70.73 71.95 
Garden 82.30 85.12 85.79 
Outdoor 71.54 77.07 75.93 
Finance 72.32 73.58 77.98 
Travel 73.17 76.82 74.39 

G 
to 
Y 

Average 70.27  75.65  76.30  
Books 53.18 62.97 66.23 
Music 46.30 65.10 64.42 
Garden 71.18 71.67 75.61 
Outdoor 68.8 72.23 74.23 
Finance 58.64 67.28 69.75 
Travel 67.32 63.36 65.34 

Y 
to 
G 

Average 60.90  67.10  69.26  
 
Table 4 shows the results of using cosine similarity 
features. Both the cosine similarity first-level and the 
bottom-level features outperform ME-Basic for all 
categories.  

In the Cosine similarity First-Level configuration, 
we only use the cosine similarity values between the 
first–level source categories and their corresponding 
target categories as features, while in the Cosine 
similarity Bottom-Level, we use the bottom-level 
categories. The results show that using the similarity 
between the bottom-level source categories and target 
categories as features is more effective than using the 
first-level categories. These results are similar to 
those in Table 3 that using the bottom-level yields 
better results than the top-level. 

Table 5 Experiment results using predicted category 
label features  

 ME-Basic CLST  
Books 60.12 67.08 
Music 62.19 71.95 
Garden 82.30 86.15 
Outdoor 71.54 76.1 
Finance 72.32 69.25 

G to Y 

Travel 73.17 78.04 
 Average 70.27  74.76  

Books 53.18 60.03 
Music 46.30 51.67 
Garden 71.18 71.92 
Outdoor 68.8 71.15 
Finance 58.64 71.69 
Travel 67.32 67.32 

Y to G 

Average 60.90  65.63  
 
Table 5 shows the results of using category label 
features for classification. Compared with ME-Basic, 
the average improvement of applying category label 
features is about 4~5%. Both category label features 
and ENB initially use a classifier to measure how 
many documents appear in both categories in the 
source and target taxonomies. Like the ENB result, 
this result shows that measuring the document overlap 
between categories provides useful information for 
web taxonomy integration. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 Elsevier Science 10 

Table 6. The results of different feature configurations 

 Books Music Garden Outdoor Finance Travel Average 
Basic (Term Frequency) 60.12 62.19 82.30 71.54 72.32 73.17 70.27 
+Hierarchical 
Shrinkage (STF) 

69.12 70.12 85.34 76.29 71.37 84.12 76.39 

+Cosine Similarity  
Bottom-Level 

75.05 79.26 87.17 76.90 75.47 82.92 79.46 

G to Y 

+Category Label  73.82 75.0 85.64 76.45 72.95 76.82 76.78 
Basic (Term Frequency) 53.18 46.30 71.18 68.8 58.64 67.32 60.90 
+Hierarchical 
Shrinkage  (STF) 

58.08 64.42 76.79 73.4 64.02 71.28 67.99 

+Cosine Similarity  
Bottom-Level 

67.37 68.45 76.35 75.26 66.67 70.29 70.73 

Y to G 

+Category Label  67.70 68.45 75.37 75.40 63.58 66.33 69.47 
Table 6 details the results of different feature 
configuration sets and the cumulative performance of 
the features listed in the second column. The ”+” sign 
following a feature name indicates that the feature is 
added incrementally. The performance of each row is 
contributed by the feature name of that row and the 
features showing above. With the baseline feature, TF, 
we add the STF feature, cosine similarity bottom-
level feature, and CLST feature incrementally. 
Adding hierarchy shrinkage and cosine similarity 
features improves the accuracy by almost 10%. 
Nevertheless, the accuracies are not improved on all 
datasets after adding category label features. The 
cosine similarity relies on term vectors; meanwhile, 
the category labels rely on the predicted category 
labels which are also decided by term vectors. 
Therefore, the information used by these two features 
is duplicated. For example, if all the documents in a 
category of the target taxonomy are tagged as one 
specific category of the source taxonomy, then it 
would be reasonable to assume that their term vectors 
would also have a high cosine value.  

80

The result of integrating the best feature set is 
better than single feature. This demonstrates that each 
feature uses different types of information and makes 
distinct contribution to the categorization 
performance. Finally, we list the performance of each 
feature and their combinations in Fig 5. 
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Fig 5 The average accuracy of features and their 
configurations. 

5. Conclusion 

We have proposed an approach that uses two types of 
information referred to source taxonomies to improve 
taxonomy integration.  Unlike previous works, which 
only consider a flattened hierarchy as the information 
source, we use a hierarchical shrinkage algorithm to 
smooth the term vector of a child document by its 
ancestor’s category. Another approach is using 
category information, the semantic relationships 
between categories.  To obtain category information, 
we not only implement the previous approaches that 
use predicted class labels, but also propose a feature 
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with better performance that uses the cosine similarity 
to measure the semantic relationships between 
categories. Finally, we integrate previous and our 
proposed features into one model, and then select the 
best configuration for classification 

For evaluating the feasibility to real applications, 
the proposed approach was tested using real Internet 
data. The experiment results show that our model, 
which incorporates source taxonomy as its features, 
outperforms the baseline system that only uses term 
frequency of documents in the target taxonomy to 
train classifiers. The results also demonstrate that 
lower-level categories provide more precise 
information than upper-level categories for shrinkage 
algorithm. 

In the future, more information, such as web 
resources, a third taxonomy, or existing taxonomies 
could be incorporated into our approach. It is also 
interesting to assess whether the proposed approach 
could be used in other applications, especially the real 
internet applications.  
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