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Abstract  
Background 
When characterizing the structural topology of proteins, protein secondary structure 

(PSS) plays an important role in analyzing and modeling protein structures because it 

represents the local conformation of amino acids into regular structures. Although 

PSS prediction has been studied for decades, the prediction accuracy reaches a 

bottleneck at around 80%, and further improvement is very difficult. 

Results 
In this paper, we present an improved dictionary-based PSS prediction method called 

SymPred, and a meta-predictor called SymPsiPred. We adopt the concept behind 

natural language processing techniques and propose synonymous words to capture 

local sequence similarities in a group of similar proteins. A synonymous word is an n-

gram pattern of amino acids that reflects the sequence variation in a protein’s 

evolution. We generate a protein-dependent synonymous dictionary from a set of 

protein sequences for PSS prediction. 

On a large non-redundant dataset of 8,297 protein chains (DsspNr-25), the average Q3 

of SymPred and SymPsiPred are 81.0% and 83.9% respectively. On the two latest 

independent test sets (EVA_Set1 and EVA_Set2), the average Q3 of SymPred is 78.8% 

and 79.2% respectively. SymPred outperforms other existing methods by 1.4% to 

5.4%. We study two factors that may affect the performance of SymPred and find that 

it is very sensitive to the number of proteins of both known and unknown structures. 

This finding implies that SymPred and SymPsiPred have the potential to achieve 

higher accuracy as the number of protein sequences in the NCBInr and PDB 

databases increases. 
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Conclusions 
Our experiment results show that local similarities in protein sequences typically 

exhibit conserved structures, which can be used to improve the accuracy of secondary 

structure prediction. For the application of synonymous words, we demonstrate an 

example of a sequence alignment which is generated by the distribution of shared 

synonymous words of a pair of protein sequences. We can align the two sequences 

nearly perfectly which are very dissimilar at the sequence level but very similar at the 

structural level. The SymPred and SymPsiPred prediction servers are available at 

http://bio-cluster.iis.sinica.edu.tw/SymPred/. 

Background  
Proteins can perform various functions when they fold into proper three-dimensional 

structures. However, since determining the structure of a protein through wet-lab 

experiments can be time-consuming and labor-intensive, computational approaches 

are preferable. To characterize the structural topology of proteins, Linderstrøm-Lang 

proposed the concept of a protein structure hierarchy with four levels: primary, 

secondary, tertiary, and quaternary. In the hierarchy, protein secondary structure (PSS) 

plays an important role in analyzing and modeling protein structures because it 

represents the local conformation of amino acids into regular structures. There are 

three basic secondary structure elements (SSEs): α-helices (H), β-strands (E), and 

coils (C). Many researchers employ PSS as a feature to predict the tertiary structure 

[1-4], function [5-8], or subcellular localization [9-11] of proteins. It is noteworthy 

that, among the various features used to predict protein function, such as amino acid 

composition, disorder patterns, and signal peptides, PSS makes the largest 

contribution [12]. Moreover it has been suggested that secondary structure alone may 

be sufficient for accurate prediction of a protein’s tertiary structure [13]. 
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Current PSS prediction methods can be classified into two categories: 

template-based methods and sequence profile-based methods [14]. Template-based 

methods use protein sequences of known secondary structures as templates, and 

predict PSS by finding alignments between a query sequence and sequences in the 

template pool. The nearest-neighbor method belongs to this category. It uses a 

database of proteins with known structures to predict the structure of a query protein 

by finding nearest neighbors in the database. By contrast, sequence profile-based 

methods (or machine learning methods) generate learning models to classify sequence 

profiles into different patterns. In this category, Artificial Neural Networks (ANNs), 

Support Vector Machines (SVMs) and Hidden Markov Models (HMMs) are the most 

widely used machine learning algorithms [15-21]. Template-based methods are highly 

accurate if there is a sequence similarity above a predefined threshold between the 

query and some of the templates; otherwise, sequence profile-based methods are more 

reliable. However, the latter may under-utilize the structural information in the 

training set when the query protein has some sequence similarity to a template in the 

training set [14]. An approach that combines the strengths of both types of methods is 

required for generating reliable predictions irrespective of whether the query sequence 

is similar or dissimilar to the templates in the training set. 

To measure the accuracy of secondary structure prediction methods, 

researchers often use the average three-state prediction accuracy (Q3) accuracy or the 

segment overlap (SOV) measure [22-23]. The estimated theoretical limit of the 

accuracy of secondary structure assignment from the experimentally determined 3D 

structure is 88% of the Q3 accuracy [5, 24], which is deemed the upper bound for 

secondary structure prediction. However, PSS prediction has been studied for decades 

and has reached a bottleneck, since the Q3 accuracy remains at approximately 80 % 
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and further improvement is very difficult, as demonstrated by the CASP competitions. 

Currently, the most effective PSS prediction methods are based on machine learning 

algorithms, such as PSIPRED [17], SVMpsi [19], PHDpsi [25], Porter [26] and 

SPINE [27], which employ ANN or SVM learning models. The two most successful 

template-based methods are NNSSP [28-29] and PREDATOR [30]. They use the 

structural information obtained from local alignments among query proteins and 

template proteins, and their Q3 accuracy is approximately 70%. Thus, the difference 

in the accuracy of the two categories is approximately 10%. 

In a previous work on PSS prediction [31], we proposed a method called 

PROSP, which utilizes a sequence-structure knowledge base to predict a query 

protein’s secondary structure. The knowledge base consists of sequence fragments, 

each of which is associated with a corresponding structure profile. The profile is a 

position specific scoring matrix that indicates the frequency of each SSE at each 

position. The average Q3 accuracy of PROSP is approximately 75%. 

In this paper, we present an improved version of PROSP called SymPred, 

which is a dictionary-based method for predicting the secondary structure of a protein 

sequence. Dictionary-based approaches are widely used in the field of natural 

language processing (NLP). We generate synonymous words from a protein sequence 

and its similar sequences. The definition of a synonymous word is given in the 

Methods section. The major differences between SymPred and PROSP are as follows. 

First, the constitutions of the dictionary (SymPred) and the knowledge base (PROSP) 

are different. Second, the scoring systems of SymPred and PROSP are different. Third, 

unlike PROSP, SymPred allows inexact matching. Our experiment results show that 

SymPred can achieve 81.0% Q3 accuracy on a non-redundant dataset, which 

represents a 5.9% performance improvement over PROSP. 
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There are significant differences between SymPred and other methods in the 

two categories described earlier. First, in contrast to template-based methods, 

SymPred does not generate a sequence alignment between the query protein and the 

template proteins. Instead, it finds templates by using local sequence similarities and 

their possible variations. Second, SymPred is not a machine learning-based approach. 

Moreover, it does not use a sequence profile, so it cannot be classified into the second 

category. However, like machine learning-based approaches, SymPred can capture 

local sequence similarities and generate reliable predictions. Therefore, SymPred 

combines the strengths of template-based and sequence profile-based methods. The 

experiment results on the two latest independent test sets (EVA_Set1 and EVA_Set2) 

show that, in terms of Q3 accuracy, SymPred outperforms other existing methods by 

1.4% to 5.4%. 

The remainder of this paper is organized as follows. In the Methods section, 

we define synonymous words, and describe the method used to construct the protein-

dependent synonymous dictionary. We also discuss the SymPred algorithm and the 

integrated SymPsiPred method. In the Results section, we compare the performance 

of SymPred and SymPsiPred with that of other methods. We also examine two factors 

that may affect SymPred’s performance. In the Discussion section, we analyze the 

prediction power of SymPred on similar proteins as well as the relationship between 

the number of synonymous words and the method’s prediction performance. We also 

demonstrate an example of a sequence alignment generated by the distribution of 

shared synonymous words of a pair of protein sequences. We can align the two 

sequences nearly perfectly which are very dissimilar at the sequence level but very 

similar at the structural level. 
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Methods 
Synonymous words versus similar words 
It is well known that a protein structure is encoded and determined by its amino acid 

sequence. Therefore, a protein sequence can be treated as a text written in an 

unknown language whose alphabet comprises 20 distinct letters; and the protein’s 

structure is analogous to the semantic meaning of the text. Currently, we cannot 

decipher the “protein language” with existing biological experiments or natural 

language processing (NLP) techniques; thus, the translation from sequence to 

structure remains a mystery. However, biologists have found that two proteins with a 

sequence identity above 40% may have a similar structure and function. The high 

degree of robustness of the structure with respect to the sequence variation shows that 

the structure is more conserved than the sequence. 

 In evolutionary biology, protein sequences that derive from a common 

ancestor can be traced on the basis of sequence similarity. Such sequences are referred 

to as homologous proteins. In terms of natural language, a group of homologous 

protein sequences can be treated as texts whose semantic meaning is identical or 

similar. The homologous relationship between proteins can be always captured by 

sequence alignment; thus, we assume that two sequence fragments have a similar 

semantic relation if they can be aligned by a sequence alignment tool, such as BLAST, 

with a significant e-value, say 0.001. Figure 1 shows an example of a sequence 

alignment derived by BLAST with an e-value of 0.001. In the alignment, the identical 

residues are labelled with letters and conserved substitutions are labelled with + 

symbols. The sequence identity between the two sequence fragments in this example 

is 50% (=20/40). 

 The idea of treating n-gram patterns as words has been widely used in 

biological sequence comparison methods; BLAST is probably the most well known 
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method. BLAST’s heuristic algorithm uses a sliding window to generate an initial 

word list from a query sequence. To further expand the word list, BLAST defines a 

similar word with respect to a word on the list based on the score of the aligned word 

pair. A word whose alignment score is well above a threshold is called a similar word 

and is added to the list to recover the sensitivity lost by only matching identical words. 

However, in BLAST, the length of a word is only 2 or 3 characters (the default size) 

for protein sequences and short words are very likely to generate a large number of 

false hits of protein sequences that are not actually semantically related. 

 In this study, we define synonymous words as follows. Given a protein 

sequence p, we use PSI-BLAST to generate a number of significant sequence 

alignments between p and its similar proteins sp. All words, i.e., n-grams, in p and sp 

are generated by a sliding window of size n. Given a word w in p, the synonymous 

word of w is defined as the word sw in sp that is aligned with w. Please note that no 

gap is allowed in either w or sw since there is no structural information in the gap 

region. Thus, the major difference between synonymous words and similar words is 

that synonymous words are based on sequence alignments (i.e., they are context-

sensitive), whereas similar words are based on word alignments (i.e., they are context-

free). Take the sequence alignment in Figure 1 as an example. The Sbjct sequence is a 

similar protein to the Query sequence; therefore, DFDM is deemed synonymous to 

the word EWQL if the word length is 4, and FDMV is deemed synonymous to the 

next word WQLV. Based on the observation of the high robustness of structures, if 

the Query is of known structure and the Sbjct is of unknown structure, we assume that 

each synonymous word sw adopts the same structure as its corresponding word w; i.e., 

sw inherits the structure of w. 
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 Moreover, different synonymous words sw for a word w should have different 

similarity scores to w. To estimate the similarity between w and sw, we calculate the 

similarity level according to the number of amino acid pairs that are interchangeable. 

If two amino acids are aligned in a sequence alignment, they are said to be 

interchangeable if they have a positive score in BLOSUM62. Since a protein word is 

an n-gram pattern, the range of the similarity level between the components of a word 

pair is from 0 to n. For example, in Figure 1, the similarity level between DFDM and 

EWQL is 3, and that between FDMV and WQLV is also 3. 

The advantages of synonymous words 
The major advantages of using synonymous words over similar words are as follows. 

First, since the synonymous words are generated from a group of similar proteins, two 

irrelevant proteins will use different groups of similar proteins to generate their own 

synonymous words. Two irrelevant proteins are unlikely to have common 

synonymous words, even if their original sequences contain identical words. This 

observation implies that synonymous words are protein-dependent. Second, two 

remote homologous proteins are very likely to have common similar proteins because 

of the transitivity of the homology relationship, so they probably share some 

synonymous words. Third, a synonymous word is given a similarity score (i.e., the 

similarity level) respective to the word it is aligned with. Therefore, a synonymous 

word may have different similarity scores depending on which word it is aligned with. 

Accordingly, a synonymous word is a protein-dependent similar word that may also 

have a similar semantic meaning in terms of its structure. 

 In this study, we construct a protein-dependent synonymous word dictionary 

that lists possible synonyms for words of a protein sequence in a dataset. We use 

synonymous words as features to infer structural information for PSS prediction. 
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Construction of a protein-dependent synonymous dictionary 
Given a query sequence, we use PSI-BLAST to generate a number of significant 

alignments, from which we acquire possible sequence variations. In general, the 

similar protein sequences (i.e., the Sbjct sequences) reported by PSI-BLAST share 

highly similar sequence identities (between 25% and 100%) with the query, which 

implies that the sequences may have similar structures. Therefore, we identify 

synonymous words in those sequences. 

Using a dataset of protein sequences with known secondary structures, we 

construct a protein-dependent synonymous dictionary, called SynonymDict. The 

dataset used to construct SynonymDict is described in the Results section. For each 

protein p in the dataset, we first extract protein words from its original sequence using 

a sliding window of size n. Each protein word, as well as the corresponding SSEs of 

the successive n residues, the protein source p, and the similarity level (here, the 

similarity level is n), are stored as an entry in SynonymDict. A protein source p 

represents the structural information provider. We then use PSI-BLAST to generate a 

number of similar protein sequences. Specifically, to find similar sequences, we 

perform a PSI-BLAST search of the NCBInr database with parameters j=3, b=500, 

and e=0.001 for each protein p in the dataset. Since the NCBInr database only 

contains protein sequence information, each synonymous word inherits the SSEs of its 

corresponding word in p. A PSI-BLAST search for a specific query protein p 

generates a number of local pairwise sequence alignments between p and its similar 

proteins. Statistically, an e-value of 0.001 generally produces a safe search and 

signifies sequence homology [32]. Similarly, each synonymous word and its inherited 

structure, the protein source p, and the similarity level are stored as an entry in 

SynonymDict. 
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Figure 2 shows the procedure used to extract protein words and synonymous 

words for a query protein p. We use a sliding window to screen the query sequence, as 

well as all the similar protein sequences found by PSI-BLAST, and extract all words. 

The query protein p is the protein source of all the extracted words. Each word is 

associated with a piece of structural information of the region from which it is 

extracted. For example, WGPV is a synonymous word of WAKV. Since it is from a 

similar protein of unknown structure, it is associated with a piece of structural 

information of WAKV, which is HHHH. 

Note that a synonymous word may appear in more than one similar protein 

when all similar protein sequences are screened. We cluster identical words together 

and store the frequency in the synonymous word entry. Table 1 shows an example of 

a synonymous word entry in SynonymDict. In the example, WGPV is a synonymous 

word of proteins A, B and C, since it is extracted from the similar proteins of A, B and 

C. The synonymous word inherits the corresponding structural information of its 

source, and we can derive the corresponding similarity levels and frequencies via the 

extraction procedure. For example, the similarity level of WGPV in terms of protein 

source A is 3 and the frequency is 7. This implies that WGPV has 3 interchangeable 

amino acids with the corresponding protein word of A and it appears 7 times among 

the similar proteins of A found in the PSI-BLAST search result. 

SymPred: a PSS predictor based on SynonymDict 
 

Preprocessing 

Given a target protein t, whose secondary structure is unknown and to be predicted, 

we perform a PSI-BLAST search on t to compile a word set containing its original 

protein words and synonymous words. The procedure is similar to the construction of 
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SynonymDict. We also calculate the frequency and similarity level of each word in the 

word set. 

Exact and inexact matching mechanisms for matching words to SynonymDict 

Each word w in the word set is used to match against words in SynonymDict, and the 

structural information of each protein source in the matched entry is used to vote for 

the secondary structure of t. When matching a word to SynonymDict, we consider 

using straightforward exact matching and a simple inexact matching. Exact matching 

is rather strict, so we consider a possible relaxation of inexact matching to increase 

the sensitivity to recover synonymous word matches so that SynonymDict can be 

utilized to more extent than by using exact matching. Our inexact matching allows at 

most one mismatched character, i.e., allowing a don’t-care character (not a gap) in the 

words. The matched entries are then evaluated by the following scoring function. (We 

will compare the two matching mechanisms in Results.) 

The Scoring Function 

To differentiate the effectiveness of matched entries, we design a scoring function 

based on the protein sources in the matched entries and the sum of the weighted 

scores on the associated structures determines the predicted structure. 

Since we use the structural information of protein sources in the matched 

entries for structure prediction, we define the scoring function based on its similarity 

level and frequency recorded in the dictionary for the following observation. The 

similarity level represents the degree of similarity between a protein word and its 

synonymous word, and the frequency represents the degree of sequence conservation 

in the protein’s evolution. Intuitively, the greater the similarity between two words, 

the closer they are in terms of evolution; likewise, the more frequently a word appears 

in a group of similar proteins, the more conserved it is in terms of evolution. 
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To define the scoring function, we consider the similarity level and the 

frequency of the word in the word set of t, denoted by Simt and freqt respectively, as 

well as those of a protein source i in its matched entry, denoted by Simi and freqi 

respectively. Note that simt and freqt are obtained in the preprocessing stage. To 

measure the effectiveness of the structural information of the protein source i, we 

define the voting score si as min(freqt, freqi)×(1+min(Simt, Simi)). The structural 

information provided by i will be highly effective if: 1) w is very similar to the 

corresponding words of t and i; and 2) w is well conserved among the similar proteins 

of t and i. 

Take the synonymous word WGPV in Table 1 as an example. If WGPV is a 

synonymous word of t (assuming freqt is 5 and Simt is 4), then the voting score of the 

structural information provided by protein source A is min(5, 7)×(1+min(4, 3)) = 

5×(1+3) = 20. Similarly, the voting score provided by protein source B is min(5, 

11)×(1+min(4, 4)) = 5×(1+4) = 25, and the score provided by protein source C is 

min(5, 3)×(1+min(4, 2)) = 3×(1+2) = 9. The structural information provided by 

protein source B has the highest score in this matched entry and therefore has the most 

effect on the prediction. 

Structure determination 

The final structure prediction of the target protein t is determined by summing the 

voting scores of all the protein sources in the matched entries. Specifically, for each 

amino acid in a protein t, we associate three variables, H(x), E(x), and C(x), which 

correspond to the total voting scores for the amino acid x that has structures H, E, and 

C, respectively. For example, if we assume that the above synonymous word WGPV 

is aligned with the residues of protein t starting at position 11, then protein A’s 

contribution to the voting score of H(11), H(12), H(13), and H(14) would be 20. 
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Similarly, protein B would contribute a voting score of 25 to H(11), H(12), C(13), and 

H(14); and protein C would contribute a voting score of 9 to C(11), H(12), H(13), and 

H(14). The structure of x is predicted to be H, E or C based on max(H(x), E(x), C(x)). 

When two or more variables have the same highest voting score, C has a higher 

priority than H, and H has a higher priority than E. 

Confidence level 

A confidence measure of a prediction for each residue is important to a PSS predictor 

because it reflects the reliability of the predictor’s output. To evaluate the prediction 

confidence on each amino acid x, we calculate a confidence level to measure the 

reliability of the prediction. The confidence level on amino acid x is defined as 

follows: 
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The product in the denominator represents a normalization factor for the scoring 

function. Therefore, the confidence level measures the ratio of the voting scores a 

residue x gets over the summation of the normalization factors. The range of ConLvl(x) 

is constrained between 0 and 9 by rounding down. In the Results section, we analyze 

the correlation coefficient between the confidence level and the average Q3 accuracy. 

SymPsiPred: a secondary structure meta-predictor 
SymPred is different from sequence profile-based methods, such as PSIPRED, which 

is currently the most popular PSS prediction tool. PSIPRED achieved the top average 

Q3 accuracy of 80.6% in the 20 methods evaluated in the CASP4 competition [33]. 

SymPred and PSIPRED use totally different features and methodologies to predict the 

secondary structure of a query protein. Specifically, SymPred relies on synonymous 

words, which represent local similarities among protein sequences and their 

homologies; however, PSIPRED relies on a position specific scoring matrix (PSSM) 

generated by PSI-BLAST, which is a condensed representation of a group of aligned 
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sequences. Furthermore, SymPred constructs a protein-dependent synonymous 

dictionary for inquiries about structural information. In contrast, PSIPRED builds a 

learning model based on a two-stage neural network to classify sequence profiles into 

a vector space; thus, it is a probabilistic model of structural types. 

It has been shown that combining the prediction results derived by various 

methods, often referred to as a meta-predictor approach, is a good way to generate 

better predictions. JPred [34] was the first meta-predictor developed for PSS 

prediction. After examining the predictions generated by six methods it, JPred 

returned the consensus prediction result and achieved a 1% improvement over PHD, 

which was the best single method among the six methods. Similar to the concept of 

the meta-predictor, we have developed an integrated method called SymPsiPred, 

which combines the strengths of SymPred and PSIPRED. 

To combine the results derived by the two methods, we compare the 

prediction confidence level of each residue from each method and return the structure 

with the higher confidence. Since SymPred and PSIPRED use different measures for 

the confidence levels, we transform their confidence levels into Q3 accuracies. For 

each method, we generate an accuracy table showing the average Q3 accuracy for 

each confidence level, i.e., we use the average Q3 accuracy of an SSE to reflect the 

prediction confidence. 

For example, suppose SymPred predicts that a residue in a target sequence has 

structure H with a confidence level of 6, PSIPRED predicts that the residue has 

structure E with a confidence level of 6, and the corresponding Q3 accuracies in the 

accuracy tables are 77.6% and 64.6% respectively. In this case, SymPsiPred would 

predict the residue as H. 
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Results 
In this section, we first reported performance evaluation of SymPred and SymPsiPred 

on a validation dataset, and then compared our methods with existing methods on 

EVA benchmark datasets. 

Datasets used to develop SymPred 
We downloaded all the protein files in the DSSP database [35] and generated three 

datasets, i.e., DsspNr-25, DsspNr-60, and DsspNr-90, based on different levels of 

sequence identity using the PSI-CD-HIT program [36] following its guidelines. In 

other words, DsspNr-25, DsspNr-60 and DsspNr-90 denote the subset of protein 

chains in DSSP with mutual sequence identity below 25%, 60% and 90%, 

respectively, and contain 8297, 12975 and 16391 protein chains, respectively.  

Performance evaluation of SymPred and SymPsiPred on the validation set 
DsspNr-25 
We used all the protein chains in DsspNr-25, DsspNr-60 and DsspNr-90 as template 

pools to construct the synonymous dictionaries SynonymDict-25, SynonymDict-60 and 

SynonymDict-90, respectively. Furthermore, we used DsspNr-25 as the validation set 

to determine the parameters of SymPred by leave-one-out cross validation (LOOCV) 

since LOOCV (also known as full jack-knife) has been shown to provide an almost 

unbiased estimate of the generalization error [37] and makes the most use the data. 

(SymPred does not need to rebuild model unlike most machine learning methods 

when using LOOCV.) Once the parameters of SymPred, including the length n of a 

word and the dictionary, were determined, we also used the validation set DsspNr-25 

to evaluate the performance of SymPred and SymPsiPred by 10-fold cross validation 

and LOOCV. To avoid over-estimation of SymPred’s performance, when testing each 

target protein in the DsspNr-25, we discarded all the structural information of proteins 

t in the template pool if t and the target protein share at least 25% sequence identity. 
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Choosing the word length 8 with inexact matching criterion and using 

SynonymDict-60, we evaluated the performance of SymPred and SymPsiPred on the 

validation set DsspNr-25 by LOOCV and 10-fold cross validation as shown in Table 

2. SymPred achieved Q3 of 80.5% and SOV of 75.6% in 10-fold cross validation and 

Q3 of 81.0% and SOV of 76.0% in LOOCV, outperforming PROSP by at least 5.4% 

in Q3 and 6.9% in SOV. The meta-predictor, SymPsiPred which integrates the 

prediction power of SymPred and PSIPRED, achieved a further improvement on Q3 

of 83.9% on DsspNr-25. This result demonstrates that SymPsiPred can combines the 

strengths of the two methods and thus yield much more accurate predictions.  

The prediction accuracy of SymPred on DsspNr-25 was obtained by optimized 

the two factors: (1) the length of protein words and the matching criterion used for 

searching the synonymous dictionary and (2) the size of the template pool, as  

mentioned earlier. Below, we analyze the two factors in more detail and the reported 

accuracies were obtained by LOOCV. 

 

Factor 1: the word length n and the matching criterion 

The choice of word length n is a trade-off between specificity and sensitivity, i.e., 

long words tend to have highly specific structural features and short words increase 

sensitivity by recovering sequence matches. Regarding the matching, in the previous 

study of PROSP, we adopted exact matching when searching a synonymous 

dictionary. Since the exact matching criterion is rather strict in terms of matching 

efficiency, we also compared the performance of SymPred using exact matching 

against using inexact matching, which allows at most one mismatched character. 

We evaluated the performance of SymPred using the smallest SynonymDict-25 

dictionary. Table 3 shows the Q3 accuracy of SymPred with exact and inexact 
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matching on different word lengths. The results reveal that the Q3 accuracy is not 

always increasing along the increasing word length in both matching mechanisms. 

The best Q3 accuracies are reported at n=7 for exact matching and n=8 for inexact 

matching. That is, 7 identical residues yield high specificity for the structural features 

and a single don’t-care character increases the sensitivity to recover sequence 

matches. In summary, we can improve the prediction performance by using the 

inexact matching criterion when searching a synonymous dictionary and choosing the 

word length 8. 

 

Factor 2: the effect of the dataset size used to compile a dictionary 

Although the estimated theoretical limit of the accuracy of secondary structure 

assignment is 88%, current state-of-the-art PSS prediction methods achieve around 

80% accuracy; there is an 8% accuracy gap. What is the major obstacle to achieving 

88% accuracy? Rost [38] raised this question, and Zhou et al. [39] suggested that the 

size of an experimental database is crucial to the performance. However, Rost found 

that PHDpsi trained on only 200 proteins was almost as accurate as PSIPRED trained 

on 2000 proteins, i.e., the performance is insensitive to the size of the training dataset. 

This is both a strength and a weakness of machine learning-based approaches. 

Machine learning-based approaches can generate satisfactory prediction models using 

a limited dataset. On the other hand, the benefit of using more instances is also limited. 

Though SymPred is not a machine-learning approach, we still concern the relationship 

between its performance and the size of a template pool.  

We fist studied the sensitivity of the data set size by compiling the 

SynonymDict-25 using different percentages of the protein sequences in DsspNr-25. 

(The following analysis is based on word length of 8 and using inexact matching in 
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SymPred.) Table 4 summarizes the prediction performance of SymPred using 

different percentages of proteins in the template pool. The performance improves as 

the number of template proteins increases. The Q3 accuracies for 10% and 100% 

usage of template proteins are 70.8% and 80.5%, respectively, a 9.7% improvement. 

Moreover, SymPred’s performance improves between 0.5% and 2.8% each time the 

number of template proteins is increased by 10%.With more protein sequences in the 

template pool, the synonymous dictionary can learn more synonymous words from 

those sequences and their similar protein sequences. 

Since SymPred is sensitive to the size of the template pool, we next evaluated 

its performance on SynonymDict-60 and SynonymDict-90, which were compiled from 

much larger template pools. Table 5 shows SymPred’s prediction performance using 

different-sized template pools. Its prediction accuracy reaches 81.0% on 

SynonymDict-60, a 0.5% improvement over using SynonymDict-25. We can learn 

more useful synonymous words from the additional template proteins. The 

implication is that if protein A and protein B are similar, say the two share 50% of 

sequence identity, then PSI-BLAST can find more similar protein sequences by 

analyzing A and B together, rather than separately. For example, there might be a 

protein C that is only similar to protein B. In such a case, if A is the query sequence, 

PSI-BLAST would not report protein C due to the low sequence identity. However, 

the advantage decreases when a larger number of similar proteins are involved in the 

template pool, as shown by the result for SynonymDict-90, which is comprised of 

proteins whose sequence identities are below 90%. The sequence conservation rate 

contracts to highly similar sequences, and this leads to a bias in the weighted scores of 

the scoring system. Therefore, we adopt SynonymDict-60 as the primary synonymous 

dictionary for making predictions. 
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Evaluation of the confidence level 
Figure 3 shows the utility of our confidence level in judging the prediction accuracy 

of each residue in the validation set. The statistics are based on more than 2 million 

residues. The correlation coefficient between the confidence levels and Q3 accuracies 

for SymPred is 0.992. Thus, our method provides strong confidence measures for the 

output. We observe that a confidence level of 7 or above reported by SymPred is 

attributed to 53% of the residues with more than 81% of the Q3 accuracy. 

Performance comparison with existing methods on EVA benchmark datasets 
EVA test sets usually serve as benchmarks of protein secondary structure predictors, 

particular for CASP competitions [40]. Only proteins without significant sequence 

identity to previously known PDB proteins were used to test on different existing 

methods. We chose two latest EVA sequence-unique subsets of the PDB, called 

EVA_Set1 (protein list: http://cubic.bioc.columbia.edu/eva/sec/set_com1.html) and 

EVA_Set2 (protein list: http://cubic.bioc.columbia.edu/eva/sec/set_com6.html), the 

former containing 80 proteins tested on the most number of methods and the latter 

with the maximum number of proteins (212 proteins). The two datasets serve as 

independent test sets for performance comparison of SymPred with other existing 

methods.  

Benchmark comparison results 

For fair comparison, when predicting the secondary structure of each target protein in 

an independent set, SymPred discarded the structural information of all proteins 

sharing at least 25% of the sequence identity with the target protein in the template 

pool, i.e., SymPred used in the template pool the structural information of proteins 

sharing no more than 25% sequence identity with the target protein.  

Table 6 shows the experiment result on the two benchmark datasets, EVA_Set1 

and EVA_Set2, where SymPred’s results were achieved by using n= 8, inexact 
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matching and SynonymDict-60 It shows that SymPred achieves Q3 accuracies of 

78.8% (SOV=76.4%) and 79.2% (SOV=76.0%), outperforming existing state-of-the-

art methods by 1.4% to 5.4%. It can be observed that SymPred performs better than 

each single predictor on most of performance measurements. 

Discussions 
In this section, we analyze the prediction power of SymPred on similar proteins as 

well as the relationship between the number of synonymous words and the method’s 

prediction performance. We also demonstrate the structure conservation of 

synonymous words via a case study of a pair of protein sequences that are very 

dissimilar at the sequence level. 

Evaluation on similar proteins 
One weakness of machine learning-based methods is that they may under-utilize the 

structural information in the training set when the query protein has a high sequence 

similarity to a template in the training set. Therefore, we assess the performance of 

SymPred when there are sequence similarities between test proteins and proteins in 

the template pool. Since SynonymDict-90 contains the largest number of known-

structure protein sequences, we conducted an experiment in which we used all the 

structural information of the template proteins in the dictionary, except the 

information of the target protein itself. Of the 8297 target proteins, 3585 have similar 

proteins in the template pool (i.e., the sequence identity ≧25%). SymPred’s average 

Q3 accuracy on those proteins is 88.1%, which fits the estimated theoretical limit of 

the accuracy. The result shows that SymPred can utilize the structural information in 

the template pool effectively when there are sequence similarities to the target protein 

sequence. 
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Prediction accuracy affected by enlargement of synonymous words 
Although the parameter b in PSI-BLAST is set at 500 for searches, not every query 

protein can have that number of similar proteins in the database used to generate 

sequence alignments. Because some query proteins are quite unique, PSI-BLAST 

only reports a few similar proteins at most, and may not report any. In such cases, 

SymPred would not have enough synonymous words to generate reliable predictions. 

On the other hand, some query proteins have many highly similar proteins in the 

database, which results in duplicate synonymous words. Apart from the number of 

sequence alignments, the number of distinct synonymous words may affect 

SymPred’s performance. Therefore, we analyze the relationship between the number 

of distinct synonymous words and the SymPred’s prediction performance. 

To study the relationship, we set different thresholds for selecting 

corresponding subsets u of test protein sequences. The selection criterion is defined as 

follows. For each test protein t in DsspNr-25, let v denote the number of distinct 

synonymous words in the word set of t, and let L be the sequence length of t ; then let 

e = v/L, which denotes the multiple of L in terms of v. If e is greater than or equal to a 

threshold, the protein t is added to u. We compare the average Q3 accuracy of proteins 

in u with respect to different thresholds. 

Table 7 shows the prediction performance of SymPred and SymPsiPred with 

respect to different thresholds. The results show that there is a positive correlation 

between the number of distinct synonymous words and the prediction performance of 

SymPred and SymPsiPred. For SymPred, the accuracy improves from 81.0% to 

83.5% when the threshold increases from e≧0 to e≧150. It is remarkable that 

SymPred can predict approximately 75% of the proteins in DsspNr-25 with 83.1% 

accuracy, and more than 50% of the protein sequences can be predicted with 83.5% 

accuracy. For SymPsiPred, the accuracy increases from 83.9% to 85.5% when the 
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threshold increases from e≧0 to e≧150. The results imply that SymPred and 

SymPsiPred have the potential to achieve higher accuracy as the number of protein 

sequences in the NCBInr database increases. 

Sequence alignment by using synonymous words 
From the performance of SymPred, we observe that protein-dependent synonymous 

words possess the property of structure conservation. In other words, the synonymous 

words show the semantic relationship in terms of protein structures. To further 

demonstrate the structure conservation property, we compare the synonymous words 

of two proteins and analyze the shared synonymous words with respect to each 

residue pair of the two proteins. The distribution of shared synonymous words can 

help to generate a highly accurate alignment for two protein sequences. 

Balibase 3.0 [41], a database that serves as an evaluation resource for 

sequence alignments, contains manually constructed multiple sequence alignments 

that are all based on three-dimensional structural superpositions. Therefore, Balibase 

can be used as a benchmark of sequence alignment tools. We downloaded the first test 

case (BB11001) and used the first two proteins (1aab and 1j46_A) to demonstrate the 

structure conservation of synonymous words. The sequence identity of the two 

proteins is only 16.7%; however, they belong to the same Family (HMG-box) 

according to the SCOP classification. This indicates that the two proteins are remotely 

homologous. 

Figure 4 shows the distribution of synonymous words shared by the two 

proteins. The x- and y- axes represent the sequence of 1j46_A and 1aab respectively. 

A grayscale pixel represents the number of shared synonymous words corresponding 

to a residue pair (xi, yj), where xi and yj denote a residue pair comprised of the i-th 

residue of 1j46_A and the j-th residue of 1aab respectively. More specifically, if an 
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identical synonymous word sw of length w is both derived from 1j46_A and 1aab 

beginning with residue xi and yj respectively, then the residue pairs (xi, yj), (xi+1, 

yj+1), …, and (xi+w-1, yj+w-1) are all counted to share sw. The darker the pixel, the 

greater the number synonymous words shared by xi and yj. 

In the figure, Box B is a zoom-in of Box A. We can see that the fourth residue 

of 1j46_A shares some synonymous words with the first residue of 1aab, the fifth 

residue of 1j46_A shares more synonymous words with the second residue of 1aab, 

and so on. It is noteworthy that the Box C shows some residues of 1j46_A shares 

synonymous words with multiple and continuous residues of 1aab. Since the 

experiment results suggest that synonymous words are likely expressing similar 

structures, the Box C implies a possible tolerance of deletions in protein 1aab. 

We align the two sequences based on the distribution of synonymous words 

shared by the two sequences. Instead of using a substitution matrix to calculate the 

score of an aligned residue pair, we use the number of shared synonymous words 

between a residue pair since the number of shared synonymous words can reflect both 

the sequence and the structure similarities of a residue pair. As a result, it generates an 

alignment indicated by the red lines shown in the figure, i.e., the fourth residue of 

1j46_A is aligned with the first residue of 1aab, the fifth residue of 1j46_A with the 

second residue of 1aab, etc, and there are two gaps in the midst of the alignment. (The 

red lines are drawn shifted a little bit in order to avoid overlapping the dark pixels.) 

Notably, the resulting alignment is very close to the alignment reported in Balibase 

for the two proteins, matching 76 out of 78 correct residues pairs, i.e., 97% of 

alignment accuracy, while ClustalW aligns 64 out of 78 residue pairs (82.1% accuracy) 

correctly. More examples of highly accurate alignment by using synonymous words 

could be found in other protein pairs. Overall speaking, the distribution of shared 
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synonymous words could indicate three-dimensional structural superpositions as well 

as the possible alignment of a protein sequence pair. 

Conclusions 
In this paper, we have proposed an improved dictionary-based approach called 

SymPred for PSS prediction. We have also presented a meta-predictor called 

SymPsiPred, which combines a dictionary-based approach (SymPred) and a machine 

learning-based approach (PSIPRED). Tests on a proteome-scale dataset of 8297 

protein chains show that the overall average Q3 accuracy of SymPred and SymPsiPred 

is 81.0% and 83.9% respectively. Through the blind test on the two independent test 

sets, SymPred achieves the average Q3 accuracies of 78.8% and 79.2% respectively, 

which are better than other state-of-the-art PSS predictors. SymPred can be regarded 

as a special case of a template-based approach because it predicts PSS by finding 

template sequences based on local similarities, i.e., synonymous words. However, the 

accuracy gap between the template-based methods and machine learning-based 

methods is approximately 10%. We show that SymPred can reduce that gap by using 

n-gram patterns. 

From the analysis of two factors, we find that the prediction accuracy of 

SymPred can be gradually improved based on each factor’s optimization. In particular, 

SymPred is very sensitive to the size of the template pool, as shown by the fact that its 

performance improves between 0.5% and 2.8% each time the number of template 

proteins is increased by 10%. Therefore, the performance accuracy will improve 

further as the number of known-structure proteins increases. Furthermore, from the 

analysis of the number of distinct synonymous words, we posit that, as the number of 

protein sequences of unknown structures increases in the NCBInr database, we will be 

able to discover more sequence variations and derive more synonymous words to 
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improve SymPred’s performance. The average Q3 accuracy of SymPred is above 83% 

for proteins that have synonymous words satisfying e≧75. Meanwhile, the Q3 

accuracy of SymPsiPred is above 85%, which is even closer to the estimated 

theoretical limit of PSS prediction accuracy. The results imply that SymPred and 

SymPsiPred have the potential to achieve higher accuracy as the number of protein 

sequences in the PDB database and the NCBInr database increases. 

When SymPred is tested on proteins that have sequence similarities to the 

template proteins, the average Q3 accuracy is approximately 88%. The result shows 

that SymPred can utilize the structural information in the template pool effectively. 

We also demonstrate the power of synonymous words in the sequence comparisons. 

The information about shared synonymous words can be used to infer three-

dimensional structural superpositions. The experiments and the analysis results 

indicate that synonymous words are reliable short templates that can provide protein-

related information. 

A major advantage of dictionary-based methods is that the prediction process 

is transparent and easy to understand. Unlike machine learning-based methods, which 

are computationally intractable, we can examine the prediction process to observe 

how SymPred generates predictions, including the synonymous words it matches 

against the dictionary and the template proteins involved in the prediction process. To 

differentiate the prediction model from machine learning-based methods, it is often 

referred to as a black box model. Another major advantage of dictionary-based 

methods is that adding more proteins with known structures is much easier than under 

machine learning-based methods. Unlike most machine learning-based methods, 

which need to retrain the prediction models, the proposed dictionary-based method 

can be expanded incrementally by simply adding new synonymous words or by 
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updating existing entries with new protein sources and the associated structural 

information. 
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Figures 
Figure 1 - A local sequence alignment derived by PSI-BLAST. 
The identical residues are labelled with letters and conserved substitutions are labelled 

with + symbols. The alignment in this example shows that the sequence fragment 

from position 7 to position 46 of the query sequence is very similar to that from 

position 3 to position 42 in the subject sequence. It is assumed that the two sequences 

have a similar semantic relation because they form a significant sequence alignment. 

Figure 2 - The procedure used to extract protein words and synonymous words 
for a query protein p. 
The procedure used to extract protein words and their synonymous words for a given 

query protein p (assuming the window size n is 4). We use a sliding window to screen 

the query sequence and all the similar protein sequences found by PSI-BLAST and 

extract all words. Each word is associated with a piece of structural information of the 

region from which it is extracted. The protein source of all the extracted words is the 

query protein p, since all the structural information is derived from p. 

Figure 3 - Relationships between Q3 accuracy and confidence level on 
SymPred 
The correlation coefficient between the confidence levels and Q3 accuracies for 

SymPred is 0.992. 

Figure 4 - The distribution of synonymous words shared by 1aab and 1j46_A. 
The x- and y- axes represent the sequence of 1j46_A and 1aab respectively. A 

grayscale pixel represents the number of shared synonymous words corresponding to 

a residue pair (xi, yj), where xi and yj denote a residue pair comprised of the i-th 

residue of 1j46_A and the j-th residue of 1aab respectively. Box B is a zoom-in of 

Box A. The red lines indicate the alignment based on the number of shared 

synonymous words, and the alignment is very close to that reported in Balibase for 
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the two proteins. Notably, it can be observed that the path of the darker pixels is 

nearly perfectly matched the suggested alignment. 
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Tables 
Table 1 - An example of a synonymous word entry in SynonymDict. 
An example of a synonymous word entry in SynonymDict (assuming the word length 

n = 4). WGPV is a synonymous word of proteins A, B and C, since it is extracted from 

the similar proteins of A, B and C. We record the structural information of protein 

sources to the corresponding synonymous words, and calculate the corresponding 

similarity levels and frequencies. For example, the similarity level of WGPV in terms 

of protein source A is 3 and the frequency is 7. 

Synonymous word: WGPV 

Protein Source Secondary Structure Similarity Level Frequency 

A HHHH 3 7 

B HHCH 4 11 

C CHHH 2 3 

Table 2 – Performnace comparison of SymPred, SymPsiPred, and PROSP on 
the DsspNr-25 dataset. 
Q3Ho (Q3Eo and Q3Co, respectively) represents correctly predicted helix (strand and 

coil, respectively) residues (percentage of helix observed). sovH/E/C values are the 

specific SOV accuracies of the predicted helix, strand and coil, respectively. 

SymPred* represents the experiment result using leave-one-out cross validation and 

SymPred+ represents the experiment result using 10-fold cross validation. 

DsspNr-25 

(8,297 proteins) 
Q3 Q3Ho Q3Eo Q3Co sov sovH sovE sovC

SymPred* 81.0 84.3 71.6 77.7 76.0 82.5 76.9 70.7

SymPred+ 80.5 84.1 70.9 77.5 75.6 82.3 76.4 70.3

SymPsiPred 83.9 81.5 75.8 83.9 80.2 82.3 80.3 76.5

PROSP 75.1 79.7 67.6 71.3 68.7 77.0 73.0 63.4



Table 4 - The Q3 accuracy comparison of SymPred using dictionaries compiled from different percentages of the template proteins. 
The performance improves as the number of template proteins increases. SymPred’s performance improves between 0.5% and 2.8% each time 

the number of template proteins is increased by 10%. 

Percentage of template pool 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

Number of template proteins 830 1660 2490 3320 4150 4980 5809 6638 7467 8297 

Q3 on DsspNr-25 70.8 73.6 75.0 76.3 77.3 78.1 78.7 79.3 79.8 80.5 

Improvement - +2.8 +1.4 +1.3 +1.0 +0.8 +0.6 +0.6 +0.5 +0.7 

Table 3 - The Q3 accuracies of SymPred using exact and inexact matchings on different word lengths. 
Word length n 6 7 8 9 

Q3 (exact matching) 78.2 80.1 78.1 76.2 

Q3 (inexact matching) 74.9 79.2 80.5 79.0 
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Table 5 - Comparison of SymPred’s prediction performance on different-sized 
template pools. 
Template pool DsspNr-25 DsspNr-60 DsspNr-90 

Number of template proteins 8297 12975 16391 

Synonymous dictionary SynonymDict-25 SynonymDict-60 SynonymDict-90 

Q3 on DsspNr-25 80.5 81.0 80.9 

Table 6 - The prediction performance of different methods on the EVA 
benchmark datasets. 
sovH/E/C values are the specific SOV accuracies of the predicted helix, strand and 

coil, respectively. The prediction results of other methods on EVA_Set1 and EVA_Set2 

are reported at http://cubic.bioc.columbia.edu/eva/sec/common3.html. 

EVA_Set1 

(80 proteins) 
Q3

ERRsig 

Q3
sov 

ERRsig

sov 
sovH sovE sovC

SymPred 78.8 ±1.4 76.4 ±1.9 85.0 76.5 70.4 

SAM-T99sec 77.2 ±1.2 74.6 ±1.5 80.9 72.5 71.2 

PSIPRED 76.8 ±1.4 75.4 ±2.0 82.1 72.3 69.2 

PROFsec 75.5 ±1.4 74.9 ±1.9 78.3 75.9 71.3 

PHDpsi 73.4 ±1.4 69.5 ±1.9 73.7 73.9 65.2 

 

EVA_Set2 

(212 proteins) 
Q3

ERRsig 

Q3
sov 

ERRsig

sov 
sovH sovE sovC

SymPred 79.2  ±0.9 76.0 ±1.2 85.1 77.7 71.3 

PSIPRED 77.8  ±0.8 75.4 ±1.1 80.6 72.6 70.4 

PROFsec 76.7  ±0.8 74.8 ±1.1 79.2 76.2 71.8 

PHDpsi 75.0  ±0.8 70.9 ±1.2 77.0 72.4 67.0 



Table 7 - The relationship between the number of distinct synonymous words and the prediction performance. 
For each test protein t of length L in DsspNr-25, let v denote the number of distinct synonymous words of t. Define e = v/L, the multiplicity of v 

over L. If e is greater than or equal to a threshold, the protein t is selected. The results show that there is a positive correlation between the 

number of distinct synonymous words and the prediction performance of SymPred and SymPsiPred. 

Selection criterion e≧0 e≧5 e≧25 e≧50 e≧75 e≧100 e≧125 e≧150 

Number of selected proteins 8297 7983 7252 6660 6178 5637 5035 4378 

SymPred 81.0 81.6 82.3 82.8 83.1 83.3 83.4 83.5 Q3

SymPsiPred 83.9 84.3 84.8 85.1 85.2 85.3 85.4 85.5 
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